19,285 research outputs found

    Nuclear Effects on Heavy Boson Production at RHIC and LHC

    Get PDF
    We predict W and Z transverse momentum distributions from proton-proton and nuclear collisions at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. The dependence of the resummed QCD results on the non-perturbative input is very weak for the systems considered. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass.Comment: 21 pages, 11 figure

    Exciton binding energies in carbon nanotubes from two-photon photoluminescence

    Full text link
    One- and two-photon luminescence excitation spectroscopy showed a series of distinct excitonic states in single-walled carbon nanotubes. The energy splitting between one- and two-photon-active exciton states of different wavefunction symmetry is the fingerprint of excitonic interactions in carbon nanotubes. We determine exciton binding energies of 0.3-0.4 eV for different nanotubes with diameters between 0.7 and 0.9 nm. Our results, which are supported by ab-initio calculations of the linear and non-linear optical spectra, prove that the elementary optical excitations of carbon nanotubes are strongly Coulomb-correlated, quasi-one dimensionally confined electron-hole pairs, stable even at room temperature. This alters our microscopic understanding of both the electronic structure and the Coulomb interactions in carbon nanotubes, and has direct impact on the optical and transport properties of novel nanotube devices.Comment: 5 pages, 4 figure

    Ground state properties of one-dimensional Bose-Fermi mixtures

    Full text link
    Bose-Fermi mixtures in one dimension are studied in detail on the basis of an exact solution. Corresponding to three possible choices of the referecce state in the quantum inverse scattering method, three sets of Bethe-ansatz equations are derived explicitly. The features of the ground state and low-lying excitations are investigated. The ground state phase diagram caused by the external field and chemical potential is obtained

    Dispersive magnetic excitations in the S=1 antiferromagnet Ba3_3Mn2_2O8_8

    Full text link
    We present powder inelastic neutron scattering measurements of the S=1 dimerized antiferromagnet Ba3_3Mn2_2O8_8. The T=1.4T=1.4 K magnetic spectrum exhibits a spin-gap of Δ1.0\Delta \approx 1.0 meV and a dispersive spectrum with a bandwidth of approximately 1.5 meV. Comparison to coupled dimer models describe the dispersion and scattering intensity accurately and determine the exchange constants in Ba3_3Mn2_2O8_8. The wave vector dependent scattering intensity confirms the proposed S=1 dimer bond. Temperature dependent measurements of the magnetic excitations indicate the presence of both singlet-triplet and thermally activated triplet-quintet excitations.Comment: 8 pages, 8 figures, Submitted to Physical Review B, Resubmited versio

    Trace distance from the viewpoint of quantum operation techniques

    Get PDF
    In the present paper, the trace distance is exposed within the quantum operations formalism. The definition of the trace distance in terms of a maximum over all quantum operations is given. It is shown that for any pair of different states, there are an uncountably infinite number of maximizing quantum operations. Conversely, for any operation of the described type, there are an uncountably infinite number of those pairs of states that the maximum is reached by the operation. A behavior of the trace distance under considered operations is studied. Relations and distinctions between the trace distance and the sine distance are discussed.Comment: 26 pages, no figures. The bibliography is extended, explanatory improvement

    Magnetic Ordering in the Spin-Ice Candidate Ho2_2Ru2_2O7_7

    Full text link
    Neutron scattering measurements on the spin-ice candidate material Ho2_2Ru2_2O7_7 have revealed two magnetic transitions at T \sim 95 K and T \sim 1.4 K to long-range ordered states involving the Ru and Ho sublattices, respectively. Between these transitions, the Ho3+^{3+} moments form short-ranged ordered spin clusters. The internal field provided by the ordered S=1 Ru4+^{4+} moments disrupts the fragile spin-ice state and drives the Ho3+^{3+} moments to order. We have directly measured a slight shift in the Ho3+^{3+} crystal field levels at 95 K from the Ru ordering.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Letter
    corecore