236 research outputs found
Animal Models of Dyssynchrony
Cardiac resynchronization therapy (CRT) is an important therapy for patients with heart failure and conduction pathology, but the benefits are heterogeneous between patients and approximately a third of patients do not show signs of clinical or echocardiographic response. This calls for a better understanding of the underlying conduction disease and resynchronization. In this review, we discuss to what extent established and novel animal models can help to better understand the pathophysiology of dyssynchrony and the benefits of CRT
The “Missing” Link Between Acute Hemodynamic Effect and Clinical Response
The hemodynamic, mechanical and electrical effects of cardiac resynchronization therapy (CRT) occur immediate and are lasting as long as CRT is delivered. Therefore, it is reasonable to assume that acute hemodynamic effects should predict long-term outcome. However, in the literature there is more evidence against than in favour of this idea. This raises the question of what factor(s) do relate to the benefit of CRT. There is increasing evidence that dyssynchrony, presumably through the resultant abnormal local mechanical behaviour, induces extensive remodelling, comprising structure, as well as electrophysiological and contractile processes. Resynchronization has been shown to reverse these processes, even in cases of limited hemodynamic improvement. These data may indicate the need for a paradigm shift in order to achieve maximal long-term CRT response
Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts
In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p 20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts
Mechano-energetics of the asynchronous and resynchronized heart
Abnormal electrical activation of the ventricles creates major abnormalities in cardiac mechanics. Local contraction patterns, as reflected by measurements of local strain, are not only out of phase, but often also show opposing length changes in early and late activated regions. As a consequence, the efficiency of cardiac pump function (the amount of stroke work generated by a unit of oxygen consumed) is approximately 30% lower in asynchronous than in synchronous hearts. Moreover, the amount of work performed in myocardial segments becomes considerably larger in late than in early activated regions. Cardiac Resynchronization Therapy (CRT) improves mechano-energetics of the previously asynchronous heart in various ways: it alleviates impediment of the abnormal contraction on blood flow, it increases myocardial efficiency, it recruits contraction in the previously early activated septum and it creates a more uniform distribution of myocardial blood flow. These factors act together to increase the range of cardiac work that can be delivered by the patients’ heart, an effect that can explain the increased exercise tolerance and quality of life reported in several CRT trials
Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response
Introduction Recent studies have shown that the baseline QRS area is associated with the clinical response after cardiac resynchronization therapy (CRT). In this study, we investigated the association of QRS area reduction ( increment QRS area) after CRT with the outcome. We hypothesize that a larger increment QRS area is associated with a better survival and echocardiographic response. Methods and Results Electrocardiograms (ECG) obtained before and 2-12 months after CRT from 1299 patients in a multi-center CRT-registry were analyzed. The QRS area was calculated from vectorcardiograms that were synthesized from 12-lead ECGs. The primary endpoint was a combination of all-cause mortality, heart transplantation, and left ventricular (LV) assist device implantation. The secondary endpoint was the echocardiographic response, defined as LV end-systolic volume reduction >= of 15%. Patients with increment QRS area above the optimal cut-off value (62 mu Vs) had a lower risk of reaching the primary endpoint (hazard ratio: 0.43; confidence interval [CI] 0.33-0.56, p = 109 mu Vs, survival, and echocardiographic response were better when the increment QRS area was >= 62 mu Vs (p = 109 mu Vs, increment QRS area was the only significant predictor of survival (OR: 0.981; CI: 0.967-0.994, p = .006). Conclusion increment QRS area is an independent determinant of CRT response, especially in patients with a large baseline QRS area. Failure to achieve a large QRS area reduction with CRT is associated with a poor clinical outcome
Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: Rationale and design of a novel software toolbox
<p>Abstract</p> <p>Background</p> <p>Dyssynchrony of myocardial deformation is usually described in terms of variability only (e.g. standard deviations SD's). A description in terms of the spatio-temporal distribution pattern (vector-analysis) of dyssynchrony or by indices estimating its impact by expressing dyscoordination of shortening in relation to the global ventricular shortening may be preferential. Strain echocardiography by speckle tracking is a new non-invasive, albeit 2-D imaging modality to study myocardial deformation.</p> <p>Methods</p> <p>A post-processing toolbox was designed to incorporate local, speckle tracking-derived deformation data into a 36 segment 3-D model of the left ventricle. Global left ventricular shortening, standard deviations and vectors of timing of shortening were calculated. The impact of dyssynchrony was estimated by comparing the end-systolic values with either early peak values only (early shortening reserve ESR) or with all peak values (virtual shortening reserve VSR), and by the internal strain fraction (ISF) expressing dyscoordination as the fraction of deformation lost internally due to simultaneous shortening and stretching. These dyssynchrony parameters were compared in 8 volunteers (NL), 8 patients with Wolff-Parkinson-White syndrome (WPW), and 7 patients before (LBBB) and after cardiac resynchronization therapy (CRT).</p> <p>Results</p> <p>Dyssynchrony indices merely based on variability failed to detect differences between WPW and NL and failed to demonstrate the effect of CRT. Only the 3-D vector of onset of shortening could distinguish WPW from NL, while at peak shortening and by VSR, ESR and ISF no differences were found. All tested dyssynchrony parameters yielded higher values in LBBB compared to both NL and WPW. CRT reduced the spatial divergence of shortening (both vector magnitude and direction), and improved global ventricular shortening along with reductions in ESR and dyscoordination of shortening expressed by ISF.</p> <p>Conclusion</p> <p>Incorporation of local 2-D echocardiographic deformation data into a 3-D model by dedicated software allows a comprehensive analysis of spatio-temporal distribution patterns of myocardial dyssynchrony, of the global left ventricular deformation and of newer indices that may better reflect myocardial dyscoordination and/or impaired ventricular contractile efficiency. The potential value of such an analysis is highlighted in two dyssynchronous pathologies that impose particular challenges to deformation imaging.</p
Intermittent pacing therapy favorably modulates infarct remodeling
textabstractDespite early revascularization, remodeling and dysfunction of the left ventricle (LV) after acute myocardial infarction (AMI) remain important therapeutic targets. Intermittent pacing therapy (IPT) of the LV can limit infarct size, when applied during early reperfusion. However, the effects of IPT on post-AMI LV remodeling and infarct healing are unknown. We therefore investigated the effects of IPT on global LV remodeling and infarct geometry in swine with a 3-day old AMI. For this purpose, fifteen pigs underwent 2 h ligation of the left circumflex coronary artery followed by reperfusion. An epicardial pacing lead was implanted in the peri-infarct zone. After three days, global LV remodeling and infarct geometry were assessed using magnetic resonance imaging (MRI). Animals were stratified into MI control and IPT groups. Thirty-five days post-AMI, follow-up MRI was obtained and myofibroblast content, markers of extracellular matrix (ECM) turnover and Wnt/frizzled signaling in infarct and non-infarct control tissue were studied. Results showed that IPT had no significant effect on global LV remodeling, function or infarct mass, but modulated infarct healing. In MI control pigs, infarct mass reduction was principally due to a 26.2 ± 4.4% reduction in infarct thickness (P ≤ 0.05), whereas in IPT pigs it was mainly due to a 35.7 ± 4.5% decrease in the number of infarct segments (P ≤ 0.05), with no significant change in infarct thickness. Myofibroblast content of the infarct zone was higher in IPT (10.9 ± 2.1%) compared to MI control (5.4 ± 1.6%; P ≤ 0.05). Higher myofibroblast presence did not coincide with alterations in expression of genes involved in ECM turnover or Wnt/frizzled signaling at 5 weeks follow-up. Taken together, IPT limited infarct expansion and altered infarct composition, showing that IPT influences remodeling of the infarct zone, likely by increasing regional myofibroblast content
Acute recoordination rather than functional hemodynamic improvement determines reverse remodelling by cardiac resynchronisation therapy
Purpose: Cardiac resynchronisation therapy (CRT) improves left ventricular (LV) function acutely, with further improvements and reverse remodelling during chronic CRT. The current study investigated the relation between acute improvement of LV systolic function, acute mechanical recoordination, and long-term reverse remodelling after CRT. Methods: In 35 patients, LV speckle tracking longitudinal strain, LV volumes & ejection fraction (LVEF) were assessed by echocardiography before, acutely within three days, and 6 months after CRT. A subgroup of 25 patients underwent invasive assessment of the maximal rate of LV pressure rise (dP/dt max,) during CRT-implantation. The acute change in dP/dt max, LVEF, systolic discoordination (internal stretch fraction [ISF] and LV systolic rebound stretch [SRSlv]) and systolic dyssynchrony (standard deviation of peak strain times [2DS-SD18]) was studied, and their association with long-term reverse remodelling were determined. Results: CRT induced acute and ongoing recoordination (ISF from 45 ± 18 to 27 ± 11 and 23 ± 12%, p < 0.001; SRS from 2.27 ± 1.33 to 0.74 ± 0.50 and 0.71 ± 0.43%, p < 0.001) and improved LV function (dP/dt max 668 ± 185 vs. 817 ± 198 mmHg/s, p < 0.001; stroke volume 46 ± 15 vs. 54 ± 20 and 52 ± 16 ml; LVEF 19 ± 7 vs. 23 ± 8 and 27 ± 10%, p < 0.001). Acute recoordination related to reverse remodelling (r = 0.601 and r = 0.765 for ISF & SRSlv, respectively, p < 0.001). Acute functional improvements of LV systolic function however, neither related to reverse remodelling nor to the extent of acute recoordination. Conclusion: Long-term reverse remodelling after CRT is likely determined by (acute) recoordination rather than by acute hemodynamic improvements. Discoordination may therefore be a more important CRT-substrate that can be assessed and, acutely restored
Electrical modalities beyond pacing for the treatment of heart failure
In this review, we report on electrical modalities, which do not fit the definition of pacemaker, but increase cardiac performance either by direct application to the heart (e.g., post-extrasystolic potentiation or non-excitatory stimulation) or indirectly through activation of the nervous system (e.g., vagal or sympathetic activation). The physiological background of the possible mechanisms of these electrical modalities and their potential application to treat heart failure are discussed
Comparison of the relation of the ESC 2021 and ESC 2013 definitions of left bundle branch block with clinical and echocardiographic outcome in cardiac resynchronization therapy
INTRODUCTION: We aimed to investigate the impact of the 2021 European Society of Cardiology (ESC) guideline changes in left bundle branch block (LBBB) definition on cardiac resynchronization therapy (CRT) patient selection and outcomes. METHODS: The MUG (Maastricht, Utrecht, Groningen) registry, consisting of consecutive patients implanted with a CRT device between 2001 and 2015 was studied. For this study, patients with baseline sinus rhythm and QRS duration ≥ 130ms were eligible. Patients were classified according to ESC 2013 and 2021 guideline LBBB definitions and QRS duration. Endpoints were heart transplantation, LVAD implantation or mortality (HTx/LVAD/mortality) and echocardiographic response (LVESV reduction ≥15%). RESULTS: The analyses included 1.202, typical CRT patients. The ESC 2021 definition resulted in considerably less LBBB diagnoses compared to the 2013 definition (31.6% vs. 80.9%, respectively). Applying the 2013 definition resulted in significant separation of the Kaplan-Meier curves of HTx/LVAD/mortality (p < .0001). A significantly higher echocardiographic response rate was found in the LBBB compared to the non-LBBB group using the 2013 definition. These differences in HTx/LVAD/mortality and echocardiographic response were not found when applying the 2021 definition. CONCLUSION: The ESC 2021 LBBB definition leads to a considerably lower percentage of patients with baseline LBBB then the ESC 2013 definition. This does not lead to better differentiation of CRT responders, nor does this lead to a stronger association with clinical outcomes after CRT. In fact, stratification according to the 2021 definition is not associated with a difference in clinical or echocardiographic outcome, implying that the guideline changes may negatively influence CRT implantation practice with a weakened recommendation in patients that will benefit from CRT
- …