133 research outputs found

    A comparative study of two 47 Tuc giant stars with different s-process enrichment

    Full text link
    Here we aim to understand the origin of 47 Tuc's La-rich star Lee 4710. We report abundances for O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, and Eu, and present a detailed abundance analysis of two 47 Tuc stars with similar stellar parameters but different slow neutron-capture (s-)process enrichment. Star Lee 4710 has the highest known La abundance ratio in this cluster ([La/Fe] = 1.14), and star Lee 4626 is known to have normal s-process abundances (e.g., [Ba/Eu]<0<0). The nucleosynthetic pattern of elements with Z≳\gtrsim56 for star Lee 4710 agrees with the predicted yields of a 1.3M⊙1.3M_{\odot} asymptotic giant branch (AGB) star. Therefore, Lee 4710 may have been enriched by mass transfer from a more massive AGB companion, which is compatible with its location far away from the center of this relatively metal-rich ([Fe/H]∼−0.7\sim-0.7) globular cluster. A further analysis comparing the abundance pattern of Lee 4710 with data available in the literature reveals that nine out of the ∼200\sim200 47 Tuc stars previously studied show strong s-process enhancements that point towards later enrichment by more massive AGB stars.Comment: ApJL in press. 6 pages, 4 figure

    Phosphorus Abundances in FGK Stars

    Full text link
    We measured phosphorus abundances in 22 FGK dwarfs and giants that span --0.55 << [Fe/H] << 0.2 using spectra obtained with the Phoenix high resolution infrared spectrometer on the Kitt Peak National Observatory Mayall 4m telescope, the Gemini South Telescope, and the Arcturus spectral atlas. We fit synthetic spectra to the P I feature at 10581 A˚\AA to determine abundances for our sample. Our results are consistent with previously measured phosphorus abundances; the average [P/Fe] ratio measured in [Fe/H] bins of 0.2 dex for our stars are within ∼\sim 1 σ\sigma compared to averages from other IR phosphorus studies. Our study provides more evidence that models of chemical evolution using the results of theoretical yields are under producing phosphorus compared to the observed abundances. Our data better fit a chemical evolution model with phosphorus yields increased by a factor of 2.75 compared to models with unadjusted yields. We also found average [P/Si] = 0.02 ±\pm 0.07 and [P/S] = 0.15 ±\pm 0.15 for our sample, showing no significant deviations from the solar ratios for [P/Si] and [P/S] ratios.Comment: 11 pages, 5 figures, Accepted to Ap

    Chlorine Isotope Ratios in M Giants

    Full text link
    We have measured the chlorine isotope ratio in six M giant stars using HCl 1-0 P8 features at 3.7 microns with R ∼\sim 50,000 spectra from Phoenix on Gemini South. The average Cl isotope ratio for our sample of stars is 2.66 ±\pm 0.58 and the range of measured Cl isotope ratios is 1.76 << 35^{35}Cl/37^{37}Cl << 3.42. The solar system meteoric Cl isotope ratio of 3.13 is consistent with the range seen in the six stars. We suspect the large variations in Cl isotope ratio are intrinsic to the stars in our sample given the uncertainties. Our average isotopic ratio is higher than the value of 1.80 for the solar neighborhood at solar metallicity predicted by galactic chemical evolution models. Finally the stellar isotope ratios in our sample are similar to those measured in the interstellar medium.Comment: 13 pages, 4 figures, Accepted to A

    A Na I Absorption Map of the Small-Scale Structure in the Interstellar Gas Toward M15

    Get PDF
    Using the DensePak fiber optic array on the KPNO WIYN telescope, we have obtained high S/N echelle spectra of the Na I D wavelength region toward the central 27" x 43" of the globular cluster M15 at a spatial resolution of 4". The spectra exhibit significant interstellar Na I absorption at LSR velocities of +3 km/s (LISM component) and +68 km/s (IVC component). Both components vary appreciably in strength on these scales. The derived Na I column densities differ by a factor of 4 across the LISM absorption map and by a factor of 16 across the IVC map. Assuming distances of 500 pc and 1500 pc for the LISM and IVC clouds, these maps show evidence of significant ISM structure down to the minimum scales of 2000 AU and 6000 AU probed in these absorbers. The smallest-scale N(Na I) variations observed in the M15 LISM and IVC maps are typically comparable to or higher than the values found at similar scales in previous studies of interstellar Na I structure toward binary stars. The physical implications of the small and larger-scale Na I features observed in the M15 maps are discussed in terms of variations in the H I column density as well as in the Na ionization equilibrium.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter

    Small-Scale Interstellar Na I Structure Toward M92

    Get PDF
    We have used integral field echelle spectroscopy with the DensePak fiber-optic array on the KPNO WIYN telescope to observe the central 27" x 43" of the globular cluster M92 in the Na I D wavelength region at a spatial resolution of 4". Two interstellar Na I absorption components are evident in the spectra at LSR velocities of 0 km/s (Cloud 1) and -19 km/s (Cloud 2). Substantial strength variations in both components are apparent down to scales limited by the fiber-to-fiber separations. The derived Na I column densities differ by a factor of 4 across the Cloud 1 absorption map and by a factor of 7 across the Cloud 2 map. Using distance upper limits of 400 and 800 pc for Cloud 1 and Cloud 2, respectively, the absorption maps indicate structure in the ISM down to scales of 1600 and 3200 AU. The fiber-to-fiber Na I column density differences toward M92 are comparable to those found in a similar study of the ISM toward the globular cluster M15. Overall, the structures in the interstellar components toward M92 have significantly lower column densities than those toward M15. We interpret these low column density structures as small-scale turbulent variations in the gas and compare them to the larger-scale, higher column density variations toward M15, which may be the hallmarks of actual H I structures.Comment: 9 pages, 2 figures, accepted for publication in ApJ Letter

    NGC 7789: An Open Cluster Case Study

    Full text link
    We have obtained high-resolution spectra of 32 giants in the open cluster NGC 7789 using the Wisconsin-Indiana-Yale-NOAO Hydra spectrograph. We explore differences in atmospheric parameters and elemental abundances caused by the use of the linelist developed for the Gaia-ESO Survey (GES) compared to one based on Arcturus used in our previous work. [Fe/H] values decrease when using the GES linelist instead of the Arcturus-based linelist; these differences are probably driven by systematically lower (~ -0.1 dex) GES surface gravities. Using the GES linelist we determine abundances for 10 elements - Fe, Mg, Si, Ca, Ti, Na, Ni, Zr, Ba, and La. We find the cluster's average metallicity [Fe/H] = 0.03 +/- 0.07 dex, in good agreement with literature values, and a lower [Mg/Fe] abundance than has been reported before for this cluster (0.11 +/- 0.05 dex). We also find the neutron-capture element barium to be highly enhanced - [Ba/Fe] = +0.48 +/- 0.08 - and disparate from cluster measurements of neutron-capture elements La and Zr (-0.08 +/- 0.05 and 0.08 +/- 0.08, respectively). This is in accordance with recent discoveries of supersolar Ba enhancement in young clusters along with more modest enhancement of other neutron-capture elements formed in similar environments.Comment: 15 pages, 9 figures, Table 1 typo fixe

    Lithium and Lithium Depletion in Halo Stars on Extreme Orbits

    Full text link
    We have determined Li abundances in 55 metal-poor (3.6 < [Fe/H] < -0.7) stars with extreme orbital kinematics. We find the Li abundance in the Li-plateau stars and examine its decrease in low-temperature, low-mass stars. The Li observations are primarily from the Keck I telescope with HIRES (spectral resolution of ~48,000 and median signal-to-noise per pixel of 140). Abundances or upper limits were determined for Li for all the stars with typical errors of 0.06 dex. Our 14 stars on the Li plateau give A(Li) = log N(Li)/N(H) + 12.00 of 2.215 +-0.110, consistent with earlier results. We find a dependence of the Li abundance on metallicity as measured by [Fe/H] and the Fe-peak elements [Cr/H] and [Ni/H], with a slope of ~0.18. We also find dependences of A(Li) with the alpha elements, Mg, Ca, and Ti. For the n-capture element, Ba, the relation between A(Li) and [Ba/H] has a shallower slope of 0.13; over a range of 2.6 dex in [Ba/H], the Li abundance spans only a factor of two. We examined the possible trends of A(Li) with the characteristics of the orbits of our halo stars, but find no relationship with kinematic or dynamic properties. The stars cooler than the Li plateau are separated into three metallicity subsets. The decrease in A(Li) sets in at hotter temperatures at high metallicities than at low metallicities; this is in the opposite sense of the predictions for Li depletion from standard and non-standard models.Comment: 29 pages including 3 tables and 12 figures Accepted by The Astrophysical Journal, for the 1 November 2005 issue, v. 63

    Chemical Abundances Of Open Clusters From High-Resolution Infrared Spectra. I. NGC 6940

    Full text link
    We present near-infrared spectroscopic analysis of 12 red giant members of the Galactic open cluster NGC 6940. High-resolution (R≃\simeq45000) and high signal-to-noise ratio (S/N > 100) near-infrared H and K band spectra were gathered with the Immersion Grating Infrared Spectrograph (IGRINS) on the 2.7m Smith Telescope at McDonald Observatory. We obtained abundances of H-burning (C, N, O), α{\alpha} (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 6940 for the first time. Many OH and CN features in the H band were used to obtain O and N abundances. C abundances were measured from four different features: CO molecular lines in the K band, high excitation C I lines present in both near-infrared and optical, CH and C2C_2 bands in the optical region. We have also determined 12C/13C^{12}C/^{13}C ratios from the R-branch band heads of first overtone (2-0) and (3-1) 12CO^{12}CO (2-0) 13CO^{13}CO lines near 23440 \overset{\lower.5em\circ}{\mathrm{A}} and (3-1) 13CO^{13}CO lines at about 23730 \overset{\lower.5em\circ}{\mathrm{A}}. We have also investigated the HF feature at 23358.3 \overset{\lower.5em\circ}{\mathrm{A}}, finding solar fluorine abundances without ruling out a slight enhancement. For some elements (such as the α{\alpha} group), IGRINS data yield more internally self-consistent abundances. We also revisited the CMD of NGC 6940 by determining the most probable cluster members using Gaia DR2. Finally, we applied Victoria isochrones and MESA models in order to refine our estimates of the evolutionary stages of our targets.Comment: 16 pages, 10 figure
    • …
    corecore