193 research outputs found

    A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus)

    No full text
    It has long been known that rodents emit signals in the ultrasonic range, but their role in social communication and mating is still under active exploration. While inbred strains of house mice have emerged as a favourite model to study ultrasonic vocalisation (USV) patterns, studies in wild animals and natural situations are still rare. We focus here on two wild derived mouse populations. We recorded them in dyadic encounters for extended periods of time to assess possible roles of USVs and their divergence between allopatric populations. We have analysed song frequency and duration, as well as spectral features of songs and syllables. We show that the populations have indeed diverged in several of these aspects and that USV patterns emitted in a mating context differ from those emitted in same sex encounters. We find that females vocalize not less, in encounters with another female even more than males. This implies that the current focus of USVs being emitted mainly by males within the mating context needs to be reconsidered. Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers. We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations

    A humanized version of Foxp2 affects ultrasonic vocalization in adult female and male mice

    Get PDF
    Abstract The transcription factor FoxP2 is involved in setting up the neuronal circuitry for vocal learning in mammals and birds and is thought to have played a special role in the evolution of human speech and language. It has been shown that an allele with a humanized version of the murine Foxp2 gene changes the ultrasonic vocalization of mouse pups compared to pups of the wild-type inbred strain. Here we tested if this humanized allele would also affect the ultrasonic vocalization of adult female and male mice. In a previous study, in which only male vocalization was considered and the mice were recorded under a restricted spatial and temporal regime, no difference in adult vocalization between genotypes was found. Here, we use a different test paradigm in which both female and male vocalizations are recorded in extended social contact. We found differences in temporal, spectral and syntactical parameters between the genotypes in both sexes, and between sexes. Mice carrying the humanized Foxp2 allele were using higher frequencies and more complex syllable types than mice of the corresponding wildtype inbred strain. Our results support the notion that the humanized Foxp2 allele has a differential effect on mouse ultrasonic vocalization. As mice carrying the humanized version of the Foxp2 gene show effects opposite to those of mice carrying disrupted or mutated alleles of this gene, we conclude that this mouse line represents an important model for the study of human speech and language evolution

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration combines organic clectro-optic materials with silicon photonic and plasmonic waveguides, The concept enables fast and power-efficient modulators that support advanced modulation formats such as QPSK and 16QAM

    Silicon-organic hybrid electro-optical devices

    Get PDF
    Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices

    Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) integration

    Get PDF
    Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, nei-ther silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials

    Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source

    Get PDF
    Terabit/s super-channels are likely to become the standard for next-generation optical networks and optical interconnects. A particularly promising approach exploits optical frequency combs for super-channel generation. We show that injection locking of a gain-switched laser diode can be used to generate frequency combs that are particularly well suited for terabit/s super-channel transmission. This approach stands out due to its extraordinary stability and flexibility in tuning both center wavelength and line spacing. We perform a series of transmission experiments using different comb line spacings and modulation formats. Using 9 comb lines and 16QAM signaling, an aggregate line rate (net data rate) of 1.296 Tbit/s (1.109 Tbit/s) is achieved for transmission over 150 km of standard single mode fiber (SSMF) using a spectral bandwidth of 166.5 GHz, which corresponds to a (net) spectral efficiency of 7.8 bit/s/Hz (6.7 bit/s/Hz). The line rate (net data rate) can be boosted to 2.112 Tbit/s (1.867 Tbit/s) for transmission over 300 km of SSMF by using a bandwidth of 300 GHz and QPSK modulation on the weaker carriers. For the reported net data rates and spectral efficiencies, we assume a variable overhead of either 7\% or 20\% for forward- error correction depending on the individual sub-channel quality after fiber transmission

    High-speed, low-power optical modulators in silicon

    Get PDF
    Silicon modulators are maturing and it is anticipated that they are going to substitute state-of-the art modulators. We review current silicon modulator approaches and then discuss the silicon-organic hybrid (SOH) approach in more detail. The SOH approach has recently enabled the operation with an energy consumption of 60 fJ/bit and demonstrated the generation of up to 112 Gbit/s per polarization in a compact silicon modulator of 1.5 mm length
    corecore