3 research outputs found

    Substrate mediated predator–prey interactions between invasive crayfish and indigenous and non-native amphipods

    No full text
    © 2020, The Author(s). The increasing number of taxa being translocated across the globe is leading to many non-native species encountering indigenous taxa as well as other non-native species. Environmental heterogeneity may strongly influence the spatial distribution, habitat use and refuge availability for these taxa. Using a series of 24-h mesocosm experiments we examined the predator–prey interactions between an invasive crayfish (Pacifastacus leniusculus) and four amphipod taxa, one indigenous (Gammarus pulex) and three non-native species (Crangonyx pseudogracilis, Dikerogammarus villosus and Gammarus tigrinus) to Great Britain. The potential mediating effect of physical habitat on predator–prey interactions was examined via the use of different substrate particle sizes; cobbles, gravels and, sand. Survivorship of amphipods in response to crayfish predation varied significantly with the highest rates recorded for the non-native species D. villosus, followed by G. tigrinus, and C. pseudogracilis, with the lowest survivorship recorded for the indigenous species G. pulex for all substrates except cobble. However, total biomass consumption of the indigenous G. pulex and the non-native D. villosus by P. leniusculus were similar suggesting that crayfish may have been satiated by larger D. villosus individuals. Substrate size had a significant influence on the predation success of P. leniusculus, with larger substrate clasts typically resulting in increased survivorship rates for all species except C. pseudogracilis, which displayed lower predation rates for sand substrates. The findings of this study highlight the risks that naïve indigenous taxa may face from new invasive species and the importance of characterising physical habitat (complexity and refugia potential) when considering the potential ecological effects of invaders on predation success

    Body size affects the vertical movement of benthic amphipods through subsurface sediments in response to drying

    No full text
    This study aimed to experimentally examine how riverbed drying and different rates of water level reduction influenced the vertical movement of amphipods of various sizes into different subsurface sediment compositions. Using sediment columns (mesocosms) filled with different sized transparent substrates, we explored how varying speeds of drawdown affected vertical movement and stranding of individuals. We hypothesised that: (1) larger individuals would be less able to migrate within subsurface sediments compared to smaller ones; (2) smaller sediment particles would lead to more individuals becoming stranded and; (3) faster rates of water level drawdown would increase the likelihood of individuals becoming stranded above the waterline. Body size significantly influenced the final position of an individual, with smaller individuals accessing deeper sediments more readily. Larger amphipods were more likely to become stranded above the waterline. Amphipods migrated to greater depths during faster water level reduction rates with smaller individuals displaying greater overall movement. Sediment particle size did not influence the ability of amphipods to move vertically into subsurface sediments in response to water level reduction. The results indicate that subsurface sediments may serve as a refuge from surface drying but that both the size of individual invertebrates influences their ability to migrate vertically
    corecore