1,853 research outputs found

    Continuum time-dependent Hartree-Fock for giant resonances in spherical nuclei

    Get PDF
    This paper deals with the solution of the spherically symmetric time-dependent Hartree-Fock approximation applied in the case of nuclear giant monopole resonances. The problem is spatially unbounded as the resonance state is in the continuum. The practical requirement to perform the calculation in a finite-sized spatial region results in a difficulty with the spatial boundary conditions. Here we propose a absorbing boundary condition scheme to handle the conflict. The derivation, via a Laplace transform method, and implementation is described. The accuracy and efficiency of the scheme is tested and the results presented to support the case that they are a effective way of handling the artificial boundary.Comment: 13 pages, 8 figure

    A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy-barriers revealed by high-field Electron Spin Resonance spectroscopy

    Full text link
    The reorientation of one small paramagnetic molecule (spin probe) in glassy polystyrene (PS) is studied by high-field Electron Spin Resonance spectroscopy at two different Larmor frequencies (190 and 285 GHz). The exponential distribution of the energy-barriers for the rotational motion of the spin probe is unambigously evidenced at both 240K and 270K. The same shape for the distribution of the energy-barriers of PS was evidenced by the master curves provided by previous mechanical and light scattering studies. The breadth of the energy-barriers distribution of the spin probe is in the range of the estimates of the breadth of the PS energy-barriers distribution. The evidence that the deep structure of the energy landscape of PS exhibits the exponential shape of the energy-barriers distribution agrees with results from extreme-value statistics and the trap model by Bouchaud and coworkers.Comment: Final version in press as Letter to the Editor on J.Phys.:Condensed Matter. Changes in bol

    The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains

    Get PDF
    Outer membrane proteins (OMPs) of Gram-negative bacteria are synthesized in the cytosol and must cross the periplasm before insertion into the outer membrane. The 17-kDa protein (Skp) is a periplasmic chaperone that assists the folding and insertion of many OMPs, including OmpA, a model OMP with a membrane embedded β-barrel domain and a periplasmic αβ domain. Structurally, Skp belongs to a family of cavity-containing chaperones that bind their substrates in the cavity, protecting them from aggregation. However, some substrates, such as OmpA, exceed the capacity of the chaperone cavity, posing a mechanistic challenge. Here, we provide direct NMR evidence that, while bound to Skp, the β-barrel domain of OmpA is maintained in an unfolded state, whereas the periplasmic domain is folded in its native conformation. Complementary cross-linking and NMR relaxation experiments show that the OmpA β-barrel is bound deep within the Skp cavity, whereas the folded periplasmic domain protrudes outside of the cavity where it tumbles independently from the rest of the complex. This domain-based chaperoning mechanism allows the transport of β-barrels across the periplasm in an unfolded state, which may be important for efficient insertion into the outer membrane

    Glassforming Liquids, Amorphous and Semicrystalline Polymers: Exploring their Energy Landscape and Dynamical Heterogeneity by Multi-frequency High-Field EPR

    Get PDF
    We review past and recent work carried out on viscous liquids, amorphous and semicrystalline polymers by multifrequency high-field electron paramagnetic resonance (HF-EPR) facility in Pisa. The emphasis is on the enhanced ability to provide fine details of the reorientation process of the paramagnetic guest, the spin probe, revealing features driving the dynamics of the host system, including the energy-barrier distribution of glassy polymers, the dynamical heterogeneity of semicrystalline polymers, and the dynamical changes occurring at the critical temperature predicted by the ideal mode-coupling theory

    The effects of a Variable IMF on the Chemical Evolution of the Galaxy

    Get PDF
    In this work we explore the effects of adopting an initial mass function (IMF) variable in time on the chemical evolution of the Galaxy. In order to do that we adopt a chemical evolution model which assumes two main infall episodes for the formation of the Galaxy. We study the effects on such a model of different IMFs. First, we use a theoretical one based on the statistical description of the density field arising from random motions in the gas. This IMF is a function of time as it depends on physical conditions of the site of star formation. We also investigate the behaviour of the model predictions using other variable IMFs, parameterized as a function of metallicity. Our results show that the theoretical IMF when applied to our model depends on time but such time variation is important only in the early phases of the Galactic evolution, when the IMF is biased towards massive stars. We also show that the use of an IMF which is a stronger function of time does not lead to a good agreement with the observational constraints suggesting that if the IMF varied this variation should have been small. Our main conclusion is that the G-dwarf metallicity distribution is best explained by infall with a large timescale and a constant IMF, since it is possible to find variable IMFs of the kind studied here, reproducing the G-dwarf metallicity but this worsens the agreement with other observational constraints.Comment: 7 pages, to appear in "The Chemical Evolution of the Milky Way: Stars vs Clusters", Vulcano, September 1999, F. Giovannelli and F. Matteucci eds. (Kluwer, Dordrecht) in pres
    • …
    corecore