70 research outputs found

    Open Wilson Lines and Group Theory of Noncommutative Yang-Mills Theory in Two Dimensions

    Get PDF
    The correlation functions of open Wilson line operators in two-dimensional Yang-Mills theory on the noncommutative torus are computed exactly. The correlators are expressed in two equivalent forms. An instanton expansion involves only topological numbers of Heisenberg modules and enables extraction of the weak-coupling limit of the gauge theory. A dual algebraic expansion involves only group theoretic quantities, winding numbers and translational zero modes, and enables analysis of the strong-coupling limit of the gauge theory and the high-momentum behaviour of open Wilson lines. The dual expressions can be interpreted physically as exact sums over contributions from virtual electric dipole quanta.Comment: 37 pages. References adde

    Quasideterminant solutions of a non-Abelian Hirota-Miwa equation

    Full text link
    A non-Abelian version of the Hirota-Miwa equation is considered. In an earlier paper [Nimmo (2006) J. Phys. A: Math. Gen. \textbf{39}, 5053-5065] it was shown how solutions expressed as quasideterminants could be constructed for this system by means of Darboux transformations. In this paper we discuss these solutions from a different perspective and show that the solutions are quasi-Pl\"{u}cker coordinates and that the non-Abelian Hirota-Miwa equation may be written as a quasi-Pl\"{u}cker relation. The special case of the matrix Hirota-Miwa equation is also considered using a more traditional, bilinear approach and the techniques are compared

    Localization for Yang-Mills Theory on the Fuzzy Sphere

    Full text link
    We present a new model for Yang-Mills theory on the fuzzy sphere in which the configuration space of gauge fields is given by a coadjoint orbit. In the classical limit it reduces to ordinary Yang-Mills theory on the sphere. We find all classical solutions of the gauge theory and use nonabelian localization techniques to write the partition function entirely as a sum over local contributions from critical points of the action, which are evaluated explicitly. The partition function of ordinary Yang-Mills theory on the sphere is recovered in the classical limit as a sum over instantons. We also apply abelian localization techniques and the geometry of symmetric spaces to derive an explicit combinatorial expression for the partition function, and compare the two approaches. These extend the standard techniques for solving gauge theory on the sphere to the fuzzy case in a rigorous framework.Comment: 55 pages. V2: references added; V3: minor corrections, reference added; Final version to be published in Communications in Mathematical Physic

    Gauge Theory on Fuzzy S^2 x S^2 and Regularization on Noncommutative R^4

    Full text link
    We define U(n) gauge theory on fuzzy S^2_N x S^2_N as a multi-matrix model, which reduces to ordinary Yang-Mills theory on S^2 x S^2 in the commutative limit N -> infinity. The model can be used as a regularization of gauge theory on noncommutative R^4_\theta in a particular scaling limit, which is studied in detail. We also find topologically non-trivial U(1) solutions, which reduce to the known "fluxon" solutions in the limit of R^4_\theta, reproducing their full moduli space. Other solutions which can be interpreted as 2-dimensional branes are also found. The quantization of the model is defined non-perturbatively in terms of a path integral which is finite. A gauge-fixed BRST-invariant action is given as well. Fermions in the fundamental representation of the gauge group are included using a formulation based on SO(6), by defining a fuzzy Dirac operator which reduces to the standard Dirac operator on S^2 x S^2 in the commutative limit. The chirality operator and Weyl spinors are also introduced.Comment: 39 pages. V2-4: References added, typos fixe

    On a direct approach to quasideterminant solutions of a noncommutative KP equation

    Full text link
    A noncommutative version of the KP equation and two families of its solutions expressed as quasideterminants are discussed. The origin of these solutions is explained by means of Darboux and binary Darboux transformations. Additionally, it is shown that these solutions may also be verified directly. This approach is reminiscent of the wronskian technique used for the Hirota bilinear form of the regular, commutative KP equation but, in the noncommutative case, no bilinearising transformation is available.Comment: 11 page

    Higher Dimensional Gravity, Propagating Torsion and AdS Gauge Invariance

    Full text link
    The most general theory of gravity in d-dimensions which leads to second order field equations for the metric has [(d-1)/2] free parameters. It is shown that requiring the theory to have the maximum possible number of degrees of freedom, fixes these parameters in terms of the gravitational and the cosmological constants. In odd dimensions, the Lagrangian is a Chern-Simons form for the (A)dS or Poincare groups. In even dimensions, the action has a Born-Infeld-like form. Torsion may occur explicitly in the Lagrangian in the parity-odd sector and the torsional pieces respect local (A)dS symmetry for d=4k-1 only. These torsional Lagrangians are related to the Chern-Pontryagin characters for the (A)dS group. The additional coefficients in front of these new terms in the Lagrangian are shown to be quantized.Comment: 10 pages, two columns, no figures, title changed in journal, final version to appear in Class. Quant. Gra

    Notes on Exact Multi-Soliton Solutions of Noncommutative Integrable Hierarchies

    Get PDF
    We study exact multi-soliton solutions of integrable hierarchies on noncommutative space-times which are represented in terms of quasi-determinants of Wronski matrices by Etingof, Gelfand and Retakh. We analyze the asymptotic behavior of the multi-soliton solutions and found that the asymptotic configurations in soliton scattering process can be all the same as commutative ones, that is, the configuration of N-soliton solution has N isolated localized energy densities and the each solitary wave-packet preserves its shape and velocity in the scattering process. The phase shifts are also the same as commutative ones. Furthermore noncommutative toroidal Gelfand-Dickey hierarchy is introduced and the exact multi-soliton solutions are given.Comment: 18 pages, v3: references added, version to appear in JHE

    Vacuum Structure of Two-Dimensional Gauge Theories on the Light Front

    Get PDF
    We discuss the problem of vacuum structure in light-front field theory in the context of (1+1)-dimensional gauge theories. We begin by reviewing the known light-front solution of the Schwinger model, highlighting the issues that are relevant for reproducing the θ\theta-structure of the vacuum. The most important of these are the need to introduce degrees of freedom initialized on two different null planes, the proper incorporation of gauge field zero modes when periodicity conditions are used to regulate the infrared, and the importance of carefully regulating singular operator products in a gauge-invariant way. We then consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z2/Z_2, which possesses nontrivial topology. In particular, there are two topological sectors and the physical vacuum state has a structure analogous to a θ\theta vacuum. We formulate the model using periodicity conditions in x±x^\pm for infrared regulation, and consider a solution in which the gauge field zero mode is treated as a constrained operator. We obtain the expected Z2Z_2 vacuum structure, and verify that the discrete vacuum angle which enters has no effect on the spectrum of the theory. We then calculate the chiral condensate, which is sensitive to the vacuum structure. The result is nonzero, but inversely proportional to the periodicity length, a situation which is familiar from the Schwinger model. The origin of this behavior is discussed.Comment: 29 pages, uses RevTeX. Improved discussion of the physical subspace generally and the vacuum states in particular. Basic conclusions are unchanged, but some specific results are modifie

    Weak coupling large-N transitions at finite baryon density

    Get PDF
    We study thermodynamics of free SU(N) gauge theory with a large number of colours and flavours on a three-sphere, in the presence of a baryon number chemical potential. Reducing the system to a holomorphic large-N matrix integral, paying specific attention to theories with scalar flavours (squarks), we identify novel third-order deconfining phase transitions as a function of the chemical potential. These transitions in the complex large-N saddle point configurations are interpreted as "melting" of baryons into (s)quarks. They are triggered by the exponentially large (~ exp(N)) degeneracy of light baryon-like states, which include ordinary baryons, adjoint-baryons and baryons made from different spherical harmonics of flavour fields on the three-sphere. The phase diagram of theories with scalar flavours terminates at a phase boundary where baryon number diverges, representing the onset of Bose condensation of squarks.Comment: 38 pages, 7 figure
    corecore