104 research outputs found

    Stature estimation for personal identification using mandibular morphometric parameters in Italian population: a preliminary report.

    Get PDF
    Stature is fundamental in personal identification for forensic and physical anthropologists. When a full skeleton is not available, stature can be estimated from incomplete human remains. It is also important to apply a method to estimate the stature based on the same specific population of the remains. For this purpose, we measured 4 distances between cephalometric landmarks of the mandible and the stature in 56 subjects (both males and females) from Caucasian Italian population. The correlation between these parameters appeared to be statistically significant, so that it was possible to establish a regression equation to estimate the stature from the mandible in this population

    Characterization of a Bacillus cereus strain associated with a large feed-related outbreak of severe infection in pigs

    Get PDF
    Aims: Bacillus cereus is often responsible for foodborne diseases and both local and systemic infections in humans. Cases of infection in other mammals are rather rare. In this study, we report a B. cereus feed-related outbreak that caused the death of 6234 pigs in Italy. Methods and Results: Massive doses of a Gram-positive, spore-forming bacterium were recovered from the animal feed, faeces of survived pigs and intestinal content of dead ones. The B. cereus MM1 strain was identified by MALDI-TOF MS and typified by RAPD-PCR. The isolate was tested for the production of PC-PLC, proteases, hemolysins and biofilm, for motility, as well as for the presence of genes encoding tissue-degrading enzymes and toxins. Antimicrobial resistance and pathogenicity in Galleria mellonella larvae were also investigated. Our results show that the isolated B. cereus strain is swimming-proficient, produces PC-PLC, proteases, hemolysins, biofilm and carries many virulence genes. The strain shows high pathogenicity in G. mellonella larvae. Conclusions: The isolated B. cereus strain demonstrates an aggressive profile of pathogenicity and virulence, being able to produce a wide range of determinants potentially hazardous to pigs' health. Significance and Impact of Study: This study highlights the proficiency of B. cereus to behave as a devastating pathogen in swine if ingested at high doses and underlines that more stringent quality controls are needed for livestock feeds and supplements

    Optimization of organotypic cultures of mouse spleen for staining and functional assays

    Get PDF
    By preserving cell viability and three-dimensional localization, organotypic culture stands out among the newest frontiers of cell culture. It has been successfully employed for the study of diseases among which neoplasias, where tumoral cells take advantage of the surrounding stroma to promote their own proliferation and survival. Organotypic culture acquires major importance in the context of the immune system, whose cells cross-talk in a complex and dynamic fashion to elicit productive responses. However, organotypic culture has been as yet poorly developed for and applied to primary and secondary lymphoid organs. Here we describe in detail the development of a protocol suitable for the efficient cutting of mouse spleen, which overcomes technical difficulties related to the peculiar organ texture, and for optimized organotypic culture of spleen slices. Moreover, we used microscopy, immunofluorescence, flow cytometry and qRT-PCR to demonstrate that the majority of cells residing in spleen slices remain alive and maintain their original location in the organ architecture for several days after cutting. The development of this protocol represents a significant technical improvement in the study of the lymphoid microenvironment in both physiological and pathological conditions involving the immune system

    Use of Saccharomyces boulardii CNCM I-745 as therapeutic strategy for prevention of nonsteroidal anti-inflammatory drug-induced intestinal injury

    Get PDF
    Background and Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs) can be associated with severe adverse digestive effects. This study examined the protective effects of the probiotic Saccharomyces boulardii CNCM I-745 in a rat model of diclofenac-induced enteropathy. Experimental Approach: Enteropathy was induced in 40-week-old male rats by intragastric diclofenac (4 mg·kg−1 BID for 14 days). S. boulardii CNCM I-745 (3 g·kg−1 BID by oral gavage) was administered starting 14 days before (preventive protocol) or along with (curative protocol) diclofenac administration. Ileal damage, inflammation, barrier integrity, gut microbiota composition and toll-like receptors (TLRs)–nuclear factor ÎșB (NF-ÎșB) pathway were evaluated. Key Results: Diclofenac elicited intestinal damage, along with increments of myeloperoxidase, malondialdehyde, tumour necrosis factor and interleukin-1ÎČ, overexpression of TLR2/4, myeloid differentiation primary response 88 (Myd88) and NF-ÎșB p65, increased faecal calprotectin and butyrate levels, and decreased blood haemoglobin levels, occludin and butyrate transporter monocarboxylate transporter 1 (MCT1) expression. In addition, diclofenac provoked a shift of bacterial taxa in both faecal and ileal samples. Treatment with S. boulardii CNCM I-745, in both preventive and curative protocols, counteracted the majority of these deleterious changes. Only preventive administration of the probiotic counteracted NSAID-induced decreased expression of MCT1 and increase in faecal butyrate levels. Occludin expression, after probiotic treatment, did not significantly change. Conclusions and Implications: Treatment with S. boulardii CNCM I-745 prevents diclofenac-induced enteropathy through anti-inflammatory and antioxidant activities. Such effects are likely to be related to increased tissue butyrate bioavailability, through an improvement of butyrate uptake by the enteric mucosa

    Signaling Cross-Talk between Salicylic and Gentisic Acid in the ‘Candidatus Phytoplasma Solani’ Interaction with Sangiovese Vines

    Get PDF
    “Bois noir” disease associated with ‘Candidatus Phytoplasma solani’ seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma–grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of ‘Ca. P. solani’-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in ‘Ca. P. solani-positive plants compared to -negative ones during the observed period
    • 

    corecore