460 research outputs found

    Crystal Structure of the Formin mDia1 in Autoinhibited Conformation

    Get PDF
    Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID).Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state.Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition

    Wave-Guiding In Substrate Supported And Freestanding Films Of Insoluble Conjugated Polymers

    Get PDF
    We demonstrate that waveguiding is possible in substrate supported and freestanding films of insoluble conjugated polymers. Photoresist gratings were used to couple 1.06-1.53 mum radiation into the waveguides allowing the refractive indices, the birefringence, and the linear losses to be measured

    Challenges facing an understanding of the nature of low-energy excited states in photosynthesis

    Full text link
    © 2016 Elsevier B.V. While the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented. A concerted experimental and theoretical research strategy is suggested and outlined, this being aimed at providing a fully comprehensive understanding

    Alu-Alu Recombination Underlying the First Large Genomic Deletion in GlcNAc-Phosphotransferase Alpha/Beta (GNPTAB) Gene in a MLII Alpha/Beta Patient

    Get PDF
    Mucolipidosis type II α/β is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/β subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII α/β patients, but no large deletions have been reported. Here we present the first case of a large homozygous intragenic GNPTAB gene deletion (c.3435-386_3602 + 343del897) encompassing exon 19, identified in a ML II α/β patient. Long-range PCR and sequencing methodologies were used to refine the characterization of this rearrangement, leading to the identification of a 21 bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5' and 3' breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19 (p.Lys1146_Trp1201del); another with an additional loss of exon 20 (p.Arg1145Serfs*2), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18.This represents the first description of a large deletion identified in the GNPTAB gene and contributes to enrich the knowledge on the molecular mechanisms underlying causative mutations in ML II.This work was supported by FCT - project PIC/IC/83252/2007 (http://alfa.fct.mctes.pt/). Coutinho MF and Quental S received grants from the FCT (SFRH/BD/48103/2008; SFRH/BPD/64025/2009)

    Combining Antigen-Based Therapy with GABA Treatment Synergistically Prolongs Survival of Transplanted ß-Cells in Diabetic NOD Mice

    Get PDF
    Antigen-based therapies (ABTs) very effectively prevent the development of type 1 diabetes (T1D) when given to young nonobese diabetic (NOD) mice, however, they have little or no ability to reverse hyperglycemia in newly diabetic NOD mice. More importantly, ABTs have not yet demonstrated an ability to effectively preserve residual ß-cells in individuals newly diagnosed with type 1 diabetes (T1D). Accordingly, there is great interest in identifying new treatments that can be combined with ABTs to safely protect ß-cells in diabetic animals. The activation of γ-aminobutyric acid (GABA) receptors (GABA-Rs) on immune cells has been shown to prevent T1D, experimental autoimmune encephalomyelitis (EAE) and rheumatoid arthritis in mouse models. Based on GABA's ability to inhibit different autoimmune diseases and its safety profile, we tested whether the combination of ABT with GABA treatment could prolong the survival of transplanted ß-cells in newly diabetic NOD mice. Newly diabetic NOD mice were untreated, or given GAD/alum (20 or 100 µg) and placed on plain drinking water, or water containing GABA (2 or 6 mg/ml). Twenty-eight days later, they received syngenic pancreas grafts and were monitored for the recurrence of hyperglycemia. Hyperglycemia reoccurred in the recipients given plain water, GAD monotherapy, GABA monotherapy, GAD (20 µg)+GABA (2 mg/ml), GAD (20 µg)+GABA (6 mg/ml) and GAD (100 µg)+GABA (6 mg/ml) about 1, 2-3, 3, 2-3, 3-8 and 10-11 weeks post-transplantation, respectively. Thus, combined GABA and ABT treatment had a synergistic effect in a dose-dependent fashion. These findings suggest that co-treatment with GABA (or other GABA-R agonists) may provide a new strategy to safely enhance the efficacy of other therapeutics designed to prevent or reverse T1D, as well as other T cell-mediated autoimmune diseases
    corecore