54 research outputs found

    Sensing Gram-negative bacteria: a phylogenetic perspective.

    No full text
    Gram-negative bacteria represent a major group of pathogens that infect all eukaryotes from plants to mammals. Gram-negative microbe-associated molecular patterns include lipopolysaccharides and peptidoglycans, major immunostimulatory determinants across phyla. Recent advances have furthered our understanding of Gram-negative detection beyond the well-defined pattern recognition receptors such as TLR4. A B-type lectin receptor for LPS and Lysine-motif containing receptors for peptidoglycans were recently added to the plant arsenal. Caspases join the ranks of mammalian cytosolic immune detectors by binding LPS, and make TLR4 redundant for septic shock. Fascinating bacterial evasion mechanisms lure the host into tolerance or promote inter-bacterial competition. Our review aims to cover recent advances on bacterial messages and host decoding systems across phyla, and highlight evolutionarily recurrent strategies

    Different flavors of Toll guide olfaction.

    No full text
    Toll-like receptors are historically linked to immunity across animal phyla, but accumulating evidence suggests they play additional roles in neuronal networks and in cell-cell interactions. Ward and colleagues now identify Toll-6 and Toll-7 as instructive guidance cues during Drosophila olfactory development

    Identification of scavenger receptor ligands.

    No full text
    Scavenger receptors (SRs) are structurally diverse but functionally related innate immune receptors involved in defence and clearance mechanisms. Their broad specificity relies on evolutionarily conserved pattern recognition domains which interact with a variety of microbial, apoptotic and modified self ligands. Studies of immune functions of SR-expressing cells require the identification of interaction partners for SRs. We have developed an ELISA-based method which allows for large-scale high-throughput screening of complex mixtures. The assay successfully identified bacterial and plasma ligands for macrophage scavenger receptor A and can be adapted to screen for novel exogenous or endogenous ligands for any immune receptor of interest

    Macrophage scavenger receptors and host-derived ligands.

    No full text
    The scavenger receptors are a large family of molecules that are structurally diverse and have been implicated in a range of functions. They are expressed by myeloid cells, selected endothelial cells and some epithelial cells and recognise many different ligands, including microbial pathogens as well as endogenous and modified host-derived molecules. This review will focus on the eight classes of scavenger receptors (class A-H) in terms of their structure, expression and recognition of host-derived ligands. Scavenger receptors have been implicated in a range of physiological and pathological processes, such as atherosclerosis and Alzheimer's disease, and function in adhesion and tissue maintenance. More recently, some of the scavenger receptors have been shown to mediate binding and endocytosis of chaperone proteins, such as the heat shock proteins, thereby playing an important role in antigen cross-presentation

    A sensitive solid-phase assay for identification of class A macrophage scavenger receptor ligands using cell lysate.

    No full text
    In order for macrophages to perform their numerous homeostatic, immunological and tissue remodeling functions they are required to express a broad repertoire of cell-surface receptors. These receptors are particularly important for their host-defense functions in the recognition of foreign pathogens. Delineation of the particular functions of specific receptors requires the identification of ligands recognized by the receptor. We have developed a sensitive, high throughput, solid-phase assay for the detection of ligands for the class A macrophage scavenger receptor (SR-A). Post-nuclear cell lysate from murine bone marrow-derived macrophages is used as a source of receptor and specific ligand binding to SR-A is detected with a monoclonal antibody for SR-A. This assay has been used effectively to identify protein ligands for SR-A on the surface of the bacterium Neisseria meningitidis (Peiser, L. et al. [Peiser, L., Makepeace, K., Pluddemann, A., Savino, S., Wright, J.C., Pizza, M., Rappuoli, R., Moxon, E.R., Gordon, S., 2006. Identification of Neisseria meningitidis nonlipopolysaccharide ligands for class A macrophage scavenger receptor by using a novel assay. Infect. Immun. 74, 5191-5199]). In this paper we describe the method in detail and define the specific variables governing the assay
    corecore