324 research outputs found

    Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission

    Get PDF
    African swine fever virus (ASFV) is a highly virulent swine pathogen that has spread across Eastern Europe since 2007 and for which there is no effective vaccine or treatment available. The dynamics of shedding and excretion is not well known for this currently circulating ASFV strain. Therefore, susceptible pigs were exposed to pigs intramuscularly infected with the Georgia 2007/1 ASFV strain to measure those dynamics through within- and between-pen transmission scenarios. Blood, oral, nasal and rectal fluid samples were tested for the presence of ASFV by virus titration (VT) and quantitative real-time polymerase chain reaction (qPCR). Serum was tested for the presence of ASFV-specific antibodies. Both intramuscular inoculation and contact transmission resulted in development of acute disease in all pigs although the experiments indicated that the pathogenesis of the disease might be different, depending on the route of infection. Infectious ASFV was first isolated in blood among the inoculated pigs by day 3, and then chronologically among the direct and indirect contact pigs, by day 10 and 13, respectively. Close to the onset of clinical signs, higher ASFV titres were found in blood compared with nasal and rectal fluid samples among all pigs. No infectious ASFV was isolated in oral fluid samples although ASFV genome copies were detected. Only one animal developed antibodies starting after 12 days post-inoculation. The results provide quantitative data on shedding and excretion of the Georgia 2007/1 ASFV strain among domestic pigs and suggest a limited potential of this isolate to cause persistent infection

    The Genetics of Life and Death: Virus-Host Interactions Underpinning Resistance to African Swine Fever, a Viral Hemorrhagic Disease

    Get PDF
    Pathogen transmission from wildlife hosts to genetically distinct species is a major driver of disease emergence. African swine fever virus (ASFV) persists in sub-Saharan Africa through a sylvatic cycle between warthogs and soft ticks that infest their burrows. The virus does not cause disease in these animals, however transmission of the virus to domestic pigs or wild boar causes a hemorrhagic fever that is invariably fatal. ASFV transmits readily between domestic pigs and causes economic hardship in areas where it is endemic. The virus is also a significant transboundary pathogen that has become established in Eastern Europe, and has recently appeared in China increasing the risk of an introduction of the disease to other pig producing centers. Although a DNA genome mitigates against rapid adaptation of the virus to new hosts, extended epidemics of African swine fever (ASF) can lead to the emergence of viruses with reduced virulence. Attenuation in the field leads to large deletions of genetic material encoding genes involved in modulating host immune responses. Therefore resistance to disease and tolerance of ASFV replication can be dependent on both virus and host factors. Here we describe the different virus-host interfaces and discuss progress toward understanding the genetic determinants of disease outcome after infection with ASFV

    Navigating VET to university: Students' perceptions of their transition to university study

    Full text link
    <p><em>This paper examines preliminary findings from research into the transition experiences of students entering university through a VET pathway. Participants’ responses obtained in an online survey are analysed to explore their perceptions of how their VET background influenced their transition, including their expectations and adjustment to university. Findings indicate that participants are largely experiencing transition as a positive experience, but in particular those who perceived their VET background as very influential on their transition have significantly higher levels of adjustment and fulfilled expectations. The survey is part of a larger research project including focus groups and interviews that will allow a deeper analysis of students’ experiences. The research also aims to contribute to a deeper conceptual understanding of the transition process. </em></p><p> </p

    Comprehensive Data Management System for National Patient-Centered Outcomes Research for Comparative Effectiveness in Total Joint Replacement

    Get PDF
    Introduction: The Agency for Healthcare Research and Quality (AHRQ) funded research program, Function and Outcomes Research for Comparative Effectiveness in Total Joint Replacement (FORCE-TJR), is a national patient-centered outcomes research registry. To serve such multi-center longitudinal patient-reported outcomes research, we designed an innovative system to support systematic data collection, management and quality monitoring for long-term outcome evaluation of care. Methods: The system structure design explicitly considered the continuum of study procedures, including patient enrollment, patient-reported baseline and follow-up surveys, joint implant components, and ambulatory record review for future potential adverse events. Patient enrollment process is recorded through a web-based data capture system. Patient-reported outcomes are completed by patients via scannable paper or web-based standardized surveys before and after surgery. Patient risk factors and implant components are collected from community-based orthopedic practices and hospital operating rooms. All data from the different sources are combined into a centralized database. Quality checks and monitoring processes are routinely conducted for each source of data. De-identified data are cleaned and scored for research analysis and surgeon quality reporting. Results: This system for the registry program was initiated in 2011. As of Feburary 2014, over 16,000 patients have been enrolled from more than 130 surgeons in 22 states. The centralized database integrating data from patients, surgeons and hospitals is updated weekly. Cleaned, scored data are provided quaterly for all surgeons to review their site- and individual-surgeon-specific outcomes through web reports. Discussion: This comprehensive data management system is expected to enhance future uses of multi-source data to guide surgeon decisions and drive quality improvement. We anticipate that this system will facilitate translation of data integration to broad clinical research to inform best practices in TJR

    Syndromic (phenotypic) diarrhea in early infancy

    Get PDF
    Syndromic diarrhea (SD), also known as phenotypic diarrhea (PD) or tricho-hepato-enteric syndrome (THE), is a congenital enteropathy presenting with early-onset of severe diarrhea requiring parenteral nutrition (PN). To date, no epidemiological data are available. The estimated prevalence is approximately 1/300,000–400,000 live births in Western Europe. Ethnic origin does not appear to be associated with SD. Infants are born small for gestational age and present with facial dysmorphism including prominent forehead and cheeks, broad nasal root and hypertelorism. Hairs are woolly, easily removed and poorly pigmented. Severe and persistent diarrhea starts within the first 6 months of life (≤ 1 month in most cases) and is accompanied by severe malabsorption leading to early and relentless protein energy malnutrition with failure to thrive. Liver disease affects about half of patients with extensive fibrosis or cirrhosis. There is currently no specific biochemical profile, though a functional T-cell immune deficiency with defective antibody production was reported. Microscopic analysis of the hair show twisted hair (pili torti), aniso- and poilkilotrichosis, and trichorrhexis nodosa. Histopathological analysis of small intestine biopsy shows non-specific villous atrophy with low or no mononuclear cell infiltration of the lamina propria, and no specific histological abnormalities involving the epithelium. The etiology remains unknown. The frequent association of the disorder with parental consanguinity and/or affected siblings suggests a genetic origin with an autosomal recessive mode of transmission. Early management consists of total PN. Some infants have a rather milder phenotype with partial PN dependency or require only enteral feeding. Prognosis of this syndrome is poor, but most patients now survive, and about half of the patients may be weaned from PN at adolescence, but experience failure to thrive and final short stature

    Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C−H Bond Activation

    Get PDF
    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct functionalization of nitrogen heterocycles through C−H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes our work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. We initially discovered an intramolecular Rh-catalyzed C-2 alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. We then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, we discovered that a novel substrate-derived Rh−N-heterocyclic carbene (NHC) complex was involved as an intermediate. We then synthesized analogous Rh−NHC complexes directly by treating precursors to the intermediate [RhCl(PCy3)2] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazoline, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy3)2 fragment coordinates to the heterocycle before intramolecular activation of the C−H bond occurs. The resulting Rh−H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid cocatalysts accelerate the alkylation, we developed conditions that efficiently and intermolecularly alkylate a variety of heterocycles, including azoles, azolines, dihydroquinazolines, pyridines, and quinolines, with a wide range of functionalized olefins. We demonstrated the utility of this methodology in the synthesis of natural products, drug candidates, and other biologically active molecules. In addition, we developed conditions to directly arylate these heterocycles with aryl halides. Our initial conditions that used PCy3 as a ligand were successful only for aryl iodides. However, efforts designed to avoid catalyst decomposition led to the development of ligands based on 9-phosphabicyclo[4.2.1]nonane (phoban) that also facilitated the coupling of aryl bromides. We then replicated the unique coordination environment, stability, and catalytic activity of this complex using the much simpler tetrahydrophosphepine ligands and developed conditions that coupled aryl bromides bearing diverse functional groups without the use of a glovebox or purified reagents. With further mechanistic inquiry, we anticipate that researchers will better understand the details of the aforementioned Rh-catalyzed C−H bond functionalization reactions, resulting in the design of more efficient and robust catalysts, expanded substrate scope, and new transformations

    Association of the phosphodiesterase 4D (PDE4D) gene and cardioembolic stroke in an Australian cohort

    Get PDF
    Background: Large-scale epidemiological studies support an important role for susceptibility genes in the pathogenesis of ischemic stroke, with phosphodiesterase 4D identified as the first gene predisposing to ischemic stroke. Several single nucleotide polymorphisms within the phosphodiesterase 4D gene have been implicated in the pathogenesis of stroke. Aim: Undertake a multivariate analysis of six single nucleotide polymorphisms within the phosphodiesterase 4D gene in a previously defined Australian stroke cohort, to determine whether these single nucleotide polymorphisms have an association with ischemic stroke. Methods: This case–control study was performed using an existing genetic database of 180 ischemic stroke patients and 301 community controls, evaluated previously for cerebrovascular risk factors (hypertension, hypercholesterolemia, diabetes, paroxysmal atrial fibrillation, smoking and history of stroke in a first-degree relative). Based on previously reported associations with large vessel disease, ischemic stroke, cardioembolic stroke or a mixture of these, six single nucleotide polymorphisms in the phosphodiesterase 4D gene were selected for study, these being single nucleotide polymorphisms 13, 19, rs152312, 45, 83 and 87, based on previously utilized DeCODE nomenclature. Single nucleotide polymorphisms were genotyped using a sequence-specific polymerase chain reaction method and gel electrophoresis. Logistic regression was undertaken to determine the relevance of each polymorphism to stroke. Further analysis was undertaken to determine the risk of stroke following stratification for stroke sub-type and etiology. Results: Significant odds ratios were found to be associated with cardioembolic strokes in two single nucleotide polymorphisms: rs152312 and SNP 45 (P<0·05). Conclusions: Our findings demonstrated an association between cardioembolic stroke and phosphodiesterase 4D single nucleotide polymorphisms rs152312 and 45. No significant association was found for the other four single nucleotide polymorphisms investigated within the phosphodiesterase 4D gene. We propose that the results from this Australian population support the concept that a large prospective international study is required to investigate the role of phosphodiesterase 4D in the cardiogenic cause of ischemic stroke.Austin G. Milton, Verna M. Aykanat, M. Anne Hamilton-Bruce, Mark Nezic, Jim Jannes, Simon A. Kobla

    SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum

    Get PDF
    Positive-strand RNA viruses, a large group including human pathogens such as SARS-coronavirus (SARS-CoV), replicate in the cytoplasm of infected host cells. Their replication complexes are commonly associated with modified host cell membranes. Membrane structures supporting viral RNA synthesis range from distinct spherular membrane invaginations to more elaborate webs of packed membranes and vesicles. Generally, their ultrastructure, morphogenesis, and exact role in viral replication remain to be defined. Poorly characterized double-membrane vesicles (DMVs) were previously implicated in SARS-CoV RNA synthesis. We have now applied electron tomography of cryofixed infected cells for the three-dimensional imaging of coronavirus-induced membrane alterations at high resolution. Our analysis defines a unique reticulovesicular network of modified endoplasmic reticulum that integrates convoluted membranes, numerous interconnected DMVs (diameter 200–300 nm), and “vesicle packets” apparently arising from DMV merger. The convoluted membranes were most abundantly immunolabeled for viral replicase subunits. However, double-stranded RNA, presumably revealing the site of viral RNA synthesis, mainly localized to the DMV interior. Since we could not discern a connection between DMV interior and cytosol, our analysis raises several questions about the mechanism of DMV formation and the actual site of SARS-CoV RNA synthesis. Our data document the extensive virus-induced reorganization of host cell membranes into a network that is used to organize viral replication and possibly hide replicating RNA from antiviral defense mechanisms. Together with biochemical studies of the viral enzyme complex, our ultrastructural description of this “replication network” will aid to further dissect the early stages of the coronavirus life cycle and its virus-host interactions
    corecore