197,194 research outputs found
Overall properties of the Gaia DR1 reference frame
We compare quasar positions of the auxiliary quasar solution with ICRF2
sources using different samples and evaluate the influence on the {\it Gaia}
DR1 reference frame owing to the Galactic aberration effect over the
J2000.0-J20015.0 period. Then we estimate the global rotation between TGAS with
{\it Tycho}-2 proper motion systems to investigate the property of the {\it
Gaia} DR1 reference frame. Finally, the Galactic kinematics analysis using the
K-M giant proper motions is performed to understand the property of {\it Gaia}
DR1 reference frame. The positional comparison between the auxiliary quasar
solution and ICRF2 shows negligible orientation and validates the declination
bias of \mas~in {\it Gaia} quasar positions with respect to ICRF2.
Galactic aberration effect is thought to cause an offset \mas~of
the axis direction of {\it Gaia} DR1 reference frame. The global rotation
between TGAS and {\it Tycho}-2 proper motion systems, obtained by different
samples, shows a much smaller value than the claimed value \masyr. For
the Galactic kinematics analysis of the TGAS K-M giants, we find possible
non-zero Galactic rotation components beyond the classical Oort constants: the
rigid part \masyr~and the differential part
\masyr~around the axis of Galactic
coordinates, which indicates possible residual rotation in {\it Gaia} DR1
reference frame or problems in the current Galactic kinematical model.Comment: 6 pages, 1 figure. Accepted for publication in A&
Transient Dynamics and Thermal Stress for Nuclear Rocket Heat-exchanger
Transient dynamics and thermal stresses in nuclear rocket heat exchange
A Near-Infrared Spectroscopic Study of Young Field Ultracool Dwarfs
We present a near-infrared (0.9-2.4 microns) spectroscopic study of 73 field
ultracool dwarfs having spectroscopic and/or kinematic evidence of youth
(~10-300 Myr). Our sample is composed of 48 low-resolution (R~100) spectra and
41 moderate-resolution spectra (R>~750-2000). First, we establish a method for
spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of
gravity. We find that both visual and index-based classification in the near-IR
provide consistent spectral types with optical spectral types, though with a
small systematic offset in the case of visual classification at J and K band.
Second, we examine features in the spectra of ~10 Myr ultracool dwarfs to
define a set of gravity-sensitive indices based on FeH, VO, K, Na and H-band
continuum shape. We then create an index-based method for classifying the
gravities of M6-L5 dwarfs that provides consistent results with gravity
classifications from optical spectroscopy. Our index-based classification can
distinguish between young and dusty objects. Guided by the resulting
classifications, we propose a set of low-gravity spectral standards for the
near-IR. Finally, we estimate the ages corresponding to our gravity
classifications.Comment: Published in ApJ. IDL program for calculating indices
(allers13_index.pro) included in the source gzipped ta
Distributed parameter type of control for a bilinear system
Optimal control laws for bilinear system in distributed parameter model - analytical determinatio
The control of absorption cross-section for a nuclear rocket
Control of absorption cross section of nuclear rocket with distributed parameter kinetics using two optimization procedure
Phase Diffusion in Single-Walled Carbon Nanotube Josephson Transistors
We investigate electronic transport in Josephson junctions formed by
single-walled carbon nanotubes coupled to superconducting electrodes. We
observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced
sub-harmonic gap structures in differential conductance, which arise from the
multiple Andreev reflections at superconductor/nanotube interfaces. The
voltage-current characteristics of these junctions display abrupt switching
from the supercurrent branch to resistive branch, with a gate-tunable switching
current ranging from 50 pA to 2.3 nA. The finite resistance observed on the
supercurrent branch and the magnitude of the switching current are in good
agreement with calculation based on the model of classical phase diffusion
Design and analysis of a wire-driven flexible manipulator for bronchoscopic interventions
Bronchoscopic interventions are widely performed for the diagnosis and treatment of lung diseases. However, for most endobronchial devices, the lack of a bendable tip restricts their access ability to get into distal bronchi with complex bifurcations. This paper presents the design of a new wire-driven continuum manipulator to help guide these devices. The proposed manipulator is built by assembling miniaturized blocks that are featured with interlocking circular joints. It has the capability of maintaining its integrity when the lengths of actuation wires change due to the shaft flex. It allows the existence of a relatively large central cavity to pass through other instruments and enables two rotational degrees of freedom. All these features make it suitable for procedures where tubular anatomies are involved and the flexible shafts have to be considerably bent in usage, just like bronchoscopic interventions. A kinematic model is built to estimate the relationship between the translations of actuation wires and the manipulator tip position. A scale-up model is produced for evaluation experiments and the results validate the performance of the proposed mechanism
Holographic Heat Current as Noether Current
We employ the Noether procedure to derive a general formula for the radially
conserved heat current in AdS planar black holes with certain transverse and
traceless perturbations, for a general class of gravity theories. For Einstein
gravity, the general higher-order Lovelock gravities and also a class of
Horndeski gravities, we derive the boundary stress tensor and show that the
resulting boundary heat current matches precisely the bulk Noether current.Comment: Latex, 27 pages, typos corrected, comments added, references adde
Thermodynamics of Einstein-Proca AdS Black Holes
We study static spherically-symmetric solutions of the Einstein-Proca
equations in the presence of a negative cosmological constant. We show that the
theory admits solutions describing both black holes and also solitons in an
asymptotically AdS background. Interesting subtleties can arise in the
computation of the mass of the solutions and also in the derivation of the
first law of thermodynamics. We make use of holographic renormalisation in
order to calculate the mass, even in cases where the solutions have a rather
slow approach to the asymptotic AdS geometry. By using the procedure developed
by Wald, we derive the first law of thermodynamics for the black hole and
soliton solutions. This includes a non-trivial contribution associated with the
Proca "charge." The solutions cannot be found analytically, and so we make use
of numerical integration techniques to demonstrate their existence.Comment: 35 pages, Improved discussion of cases with logarithmic asymptotic
fall off
- …