64 research outputs found
Semiclassical scalar propagators in curved backgrounds: formalism and ambiguities
The phenomenology of quantum systems in curved space-times is among the most
fascinating fields of physics, allowing --often at the gedankenexperiment
level-- constraints on tentative theories of quantum gravity. Determining the
dynamics of fields in curved backgrounds remains however a complicated task
because of the highly intricate partial differential equations involved,
especially when the space metric exhibits no symmetry. In this article, we
provide --in a pedagogical way-- a general formalism to determine this dynamics
at the semiclassical order. To this purpose, a generic expression for the
semiclassical propagator is computed and the equation of motion for the
probability four-current is derived. Those results underline a direct analogy
between the computation of the propagator in general relativistic quantum
mechanics and the computation of the propagator for stationary systems in
non-relativistic quantum mechanics. A possible application of this formalism to
curvature-induced quantum interferences is also discussed.Comment: New materials on gravitationally-induced quantum interferences has
been adde
Radiation reaction and energy-momentum conservation
We discuss subtle points of the momentum balance for radiating particles in
flat and curved space-time. An instantaneous balance is obscured by the
presence of the Schott term which is a finite part of the bound field momentum.
To establish the balance one has to take into account the initial and final
conditions for acceleration, or to apply averaging. In curved space-time an
additional contribution arises from the tidal deformation of the bound field.
This force is shown to be the finite remnant from the mass renormalization and
it is different both form the radiation recoil force and the Schott force. For
radiation of non-gravitational nature from point particles in curved space-time
the reaction force can be computed substituting the retarded field directly to
the equations of motion. Similar procedure is applicable to gravitational
radiation in vacuum space-time, but fails in the non-vacuum case. The existence
of the gravitational quasilocal reaction force in this general case seems
implausible, though it still exists in the non-relativistic approximation. We
also explain the putative antidamping effect for gravitational radiation under
non-geodesic motion and derive the non-relativistic gravitational quadrupole
Schott term. Radiation reaction in curved space of dimension other than four is
also discussedComment: Lecture given at the C.N.R.S. School "Mass and Motion in General
Relativity", Orleans, France, 200
van Vleck determinants: geodesic focussing and defocussing in Lorentzian spacetimes
The van Vleck determinant is an ubiquitous object, arising in many physically
interesting situations such as: (1) WKB approximations to quantum time
evolution operators and Green functions. (2) Adiabatic approximations to heat
kernels. (3) One loop approximations to functional integrals. (4) The theory of
caustics in geometrical optics and ultrasonics. (5) The focussing and
defocussing of geodesic flows in Riemannian manifolds. While all of these
topics are interrelated, the present paper is particularly concerned with the
last case and presents extensive theoretical developments that aid in the
computation of the van Vleck determinant associated with geodesic flows in
Lorentzian spacetimes. {\sl A fortiori} these developments have important
implications for the entire array of topics indicated. PACS: 04.20.-q,
04.20.Cv, 04.60.+n. To appear in Physical Review D47 (1993) 15 March.Comment: plain LaTeX, 18 page
Differential geometry, Palatini gravity and reduction
The present article deals with a formulation of the so called (vacuum)
Palatini gravity as a general variational principle. In order to accomplish
this goal, some geometrical tools related to the geometry of the bundle of
connections of the frame bundle are used. A generalization of
Lagrange-Poincar\'e reduction scheme to these types of variational problems
allows us to relate it with the Einstein-Hilbert variational problem. Relations
with some other variational problems for gravity found in the literature are
discussed.Comment: 28 pages, no figures. (v3) Remarks, discussion and references adde
Coherent states for a quantum particle on a circle
The coherent states for the quantum particle on the circle are introduced.
The Bargmann representation within the actual treatment provides the
representation of the algebra , where is unitary, which is a
direct consequence of the Heisenberg algebra , but it is
more adequate for the study of the circlular motion.Comment: 23 pages LaTeX, uses ioplppt.st
van Vleck determinants: traversable wormhole spacetimes
Calculating the van Vleck determinant in traversable wormhole spacetimes is
an important ingredient in understanding the physical basis behind Hawking's
chronology protection conjecture. This paper presents extensive computations of
this object --- at least in the short--throat flat--space approximation. An
important technical trick is to use an extension of the usual junction
condition formalism to probe the full Riemann tensor associated with a thin
shell of matter. Implications with regard to Hawking's chronology protection
conjecture are discussed. Indeed, any attempt to transform a single isolated
wormhole into a time machine results in large vacuum polarization effects
sufficient to disrupt the internal structure of the wormhole before the onset
of Planck scale physics, and before the onset of time travel. On the other
hand, it is possible to set up a putative time machine built out of two or more
wormholes, each of which taken in isolation is not itself a time machine. Such
``Roman configurations'' are much more subtle to analyse. For some particularly
bizarre configurations (not traversable by humans) the vacuum polarization
effects can be arranged to be arbitrarily small at the onset of Planck scale
physics. This indicates that the disruption scale has been pushed down into the
Planck slop. Ultimately, for these configurations, questions regarding the
truth or falsity of Hawking's chronology protection can only be addressed by
entering the uncharted wastelands of full fledged quantum gravity.Comment: 42 pages, ReV_TeX 3.
Radiative multipole moments of integer-spin fields in curved spacetime
Radiative multipole moments of scalar, electromagnetic, and linearized
gravitational fields in Schwarzschild spacetime are computed to third order in
v in a weak-field, slow-motion approximation, where v is a characteristic
velocity associated with the motion of the source. To zeroth order in v, a
radiative moment of order l is given by the corresponding source moment
differentiated l times with respect to retarded time. At second order in v,
additional terms appear inside the spatial integrals. These are near-zone
corrections which depend on the detailed behavior of the source. At third order
in v, the correction terms occur outside the spatial integrals, so that they do
not depend on the detailed behavior of the source. These are wave-propagation
corrections which are heuristically understood as arising from the scattering
of the radiation by the spacetime curvature surrounding the source. Our
calculations show that the wave-propagation corrections take a universal form
which is independent of multipole order and field type. We also show that in
general relativity, temporal and spatial curvatures contribute equally to the
wave-propagation corrections.Comment: 34 pages, ReVTe
Thermal radiation in non-static curved spacetimes: quantum mechanical path integrals and configuration space topology
A quantum mechanical path integral derivation is given of a thermal
propagator in non-static Gui spacetime. The thermal nature of the propagator is
understood in terms of homotopically non-trivial paths in the configuration
space appropriate to tortoise coordinates. The connection to thermal emission
from collapsing black holes is discussed.Comment: 20 pages, major revised version, 9 figures, new titl
- …