49 research outputs found

    Consequences of making the inactive active through changes in antisense oligonucleotide chemistries

    Get PDF
    Antisense oligonucleotides are short, single-stranded nucleic acid analogues that can interfere with pre-messenger RNA (pre-mRNA) processing and induce excision of a targeted exon from the mature transcript. When developing a panel of antisense oligonucleotides to skip every dystrophin exon, we found great variation in splice switching efficiencies, with some antisense oligonucleotides ineffective, even when directed to canonical splice sites and transfected into cells at high concentrations. In this study, we re-evaluated some of these ineffective antisense oligonucleotide sequences after incorporation of locked nucleic acid residues to increase annealing potential. Antisense oligonucleotides targeting exons 16, 23, and 51 of human DMD transcripts were synthesized as two different chemistries, 2 '-O-methyl modified bases on a phosphorothioate backbone or mixmers containing several locked nucleic acid residues, which were then transfected into primary human myotubes, and DMD transcripts were analyzed for exon skipping. The ineffective 2 '-O-methyl modified antisense oligonucleotides induced no detectable exon skipping, while all corresponding mixmers did induce excision of the targeted exons. Interestingly, the mixmer targeting exon 51 induced two unexpected transcripts arising from partial skipping of exon 51 with retention of 95 or 188 bases from the 5 ' region of exon 51. These results indicated that locked nucleic acid/2 '-O-methyl mixmers are more effective at inducing exon skipping, however, this improvement may come at the cost of activating alternative cryptic splice sites and off-target effects on gene expression

    Antisense oligonucleotide induction of the hnRNPA1b isoform affects pre-mRNA splicing of SMN2 in SMA type I fibroblasts

    Get PDF
    Spinal muscular atrophy (SMA) is a severe, debilitating neuromuscular condition characterised by loss of motor neurons and progressive muscle wasting. SMA is caused by a loss of expression of SMN1 that encodes the survival motor neuron (SMN) protein necessary for the survival of motor neurons. Restoration of SMN expression through increased inclusion of SMN2 exon 7 is known to ameliorate symptoms in SMA patients. As a consequence, regulation of pre-mRNA splicing of SMN2 could provide a potential molecular therapy for SMA. In this study, we explored if splice switching antisense oligonucleotides could redirect the splicing repressor hnRNPA1 to the hnRNPA1b isoform and restore SMN expression in fibroblasts from a type I SMA patient. Antisense oligonucleotides (AOs) were designed to promote exon 7b retention in the mature mRNA and induce the hnRNPA1b isoform. RT-PCR and western blot analysis were used to assess and monitor the efficiency of different AO combinations. A combination of AOs targeting multiple silencing motifs in hnRNPA1 pre-mRNA led to robust hnRNPA1b induction, which, in turn, significantly increased expression of full-length SMN (FL-SMN) protein. A combination of PMOs targeting the same motifs also strongly induced hnRNPA1b isoform, but surprisingly SMN2 exon 5 skipping was detected, and the PMO cocktail did not lead to a significant increase in expression of FL-SMN protein. We further performed RNA sequencing to assess the genome-wide effects of hnRNPA1b induction. Some 3244 genes were differentially expressed between the hnRNPA1b-induced and untreated SMA fibroblasts, which are functionally enriched in cell cycle and chromosome segregation processes. RT-PCR analysis demonstrated that expression of the master regulator of these enrichment pathways, MYBL2 and FOXM1B, were reduced in response to PMO treatment. These findings suggested that induction of hnRNPA1b can promote SMN protein expression, but not at sufficient levels to be clinically relevant

    MTAP-related increased erythroblast proliferation as a mechanism of polycythaemia vera

    Get PDF
    Polycythaemia vera (PV) is a haematological disorder caused by an overproduction of erythroid cells. To date, the molecular mechanisms involved in the disease pathogenesis are still ambiguous. This study aims to identify aberrantly expressed proteins in erythroblasts of PV patients by utilizing mass spectrometry-based proteomic analysis. Haematopoietic stem cells (HSCs) were isolated from newly-diagnosed PV patients, PV patients who have received cytoreductive therapy, and healthy subjects. In vitro erythroblast expansion confirmed that the isolated HSCs recapitulated the disease phenotype as the number of erythroblasts from newly-diagnosed PV patients was significantly higher than those from the other groups. Proteomic comparison revealed 17 proteins that were differentially expressed in the erythroblasts from the newly-diagnosed PV patients compared to those from healthy subjects, but which were restored to normal levels in the patients who had received cytoreductive therapy. One of these proteins was S-methyl-5′-thioadenosine phosphorylase (MTAP), which had reduced expression in PV patients’ erythroblasts. Furthermore, MTAP knockdown in normal erythroblasts was shown to enhance their proliferative capacity. Together, this study identifies differentially expressed proteins in erythroblasts of healthy subjects and those of PV patients, indicating that an alteration of protein expression in erythroblasts may be crucial to the pathology of PV

    Antisense PMO Found in Dystrophic Dog Model Was Effective in Cells from Exon 7-Deleted DMD Patient

    Get PDF
    BACKGROUND: Antisense oligonucleotide-induced exon skipping is a promising approach for treatment of Duchenne muscular dystrophy (DMD). We have systemically administered an antisense phosphorodiamidate morpholino oligomer (PMO) targeting dystrophin exons 6 and 8 to a dog with canine X-linked muscular dystrophy in Japan (CXMD(J)) lacking exon 7 and achieved recovery of dystrophin in skeletal muscle. To date, however, antisense chemical compounds used in DMD animal models have not been directly applied to a DMD patient having the same type of exon deletion. We recently identified a DMD patient with an exon 7 deletion and tried direct translation of the antisense PMO used in dog models to the DMD patient's cells. METHODOLOGY/PRINCIPAL FINDINGS: We converted fibroblasts of CXMD(J) and the DMD patient to myotubes by FACS-aided MyoD transduction. Antisense PMOs targeting identical regions of dog and human dystrophin exons 6 and 8 were designed. These antisense PMOs were mixed and administered as a cocktail to either dog or human cells in vitro. In the CXMD(J) and human DMD cells, we observed a similar efficacy of skipping of exons 6 and 8 and a similar extent of dystrophin protein recovery. The accompanying skipping of exon 9, which did not alter the reading frame, was different between cells of these two species. CONCLUSION/SIGNIFICANCE: Antisense PMOs, the effectiveness of which has been demonstrated in a dog model, achieved multi-exon skipping of dystrophin gene on the FACS-aided MyoD-transduced fibroblasts from an exon 7-deleted DMD patient, suggesting the feasibility of systemic multi-exon skipping in humans

    Marginal Level Dystrophin Expression Improves Clinical Outcome in a Strain of Dystrophin/Utrophin Double Knockout Mice

    Get PDF
    Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx) mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD) patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv) mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies

    Antisense oligonucleotide mediated terminal intron retention of the SMN2 transcript

    Get PDF
    The severe childhood disease spinal muscular atrophy (SMA) arises from the homozygous loss of the survival motor neuron 1 gene (SMN1). A homologous gene potentially encoding an identical protein, SMN2 can partially compensate for the loss of SMN1, however the exclusion of a critical exon in the coding region during mRNA maturation results in insufficient levels of functional protein. The rate of transcription is known to influence the alternative splicing of gene transcripts, with a fast transcription rate correlating to an increase in alternative splicing. Conversely, a slower transcription rate is more likely to result in the inclusion of all exons in the transcript. Targeting SMN2 with antisense oligonucleotides to influence the processing of terminal exon 8 could be a way to slow transcription and induce the inclusion of exon 7. Interestingly, following oligomer treatment of SMA patient fibroblasts, we observed the inclusion of exon 7 as well as intron 7 in the transcript. Since the normal termination codon is located in exon 7, this exon/intron7-SMN2 transcript should encode the normal protein, and only carry a longer 3´ untranslated region. Further studies showed the extra 3´UTR length contained a number of regulatory motifs that modify transcript and protein regulation, leading to translational repression of SMN. While unlikely to provide therapeutic benefit for spinal muscular atrophy patients, this novel technique for gene regulation could provide another avenue for the repression of undesirable gene expression in a variety of other diseases

    Personalised genetic intervention for duchenne muscular dystrophy: Antisense oligomers and exon skipping

    No full text
    Duchenne muscular dystrophy (DMD) arises from protein-truncating mutations in the large dystrophin gene that preclude synthesis of a functional protein that primarily stabilizes muscle fibre membranes. The absence of dystrophin leads to this most common and serious form of childhood muscle-wasting. Since the identification of the dystrophin gene in 1987, cell and gene repair or replacement therapies have been evaluated for DMD treatment and one genetic intervention, exon skipping, is now in clinical trials. Antisense oligomers have been designed to redirect dystrophin splicing patterns so that targeted exons may be removed from a defective dystrophin pre-mRNA to either restore the reading frame of a deletion, or excise an in-frame exon corrupted by a nonsense mutation or microinsertion/ deletion. This review discusses the evolution of oligomer induced exon skipping, including in vitro applications, evaluation of different oligomer chemistries, the treatment of animal models and alternative exon skipping strategies involving viral expression cassettes and ex vivo manipulation of stem cells. The discussion culminates with the current clinical trials and the great challenges that lie ahead. The major obstacle to the implementation of personalised genetic treatments to address the many different mutations that can lead to DMD, are considered to be establishing effective treatments for the different patients and their mutations. Furthermore, the view of regulatory authorities in assessing preclinical data on potentially scores of different but class-specific compounds will be of paramount importance in expediting the clinical application of exon skipping therapy for this serious and relentlessly progressive muscle wasting disease

    Antisense oligomer induced splice manipulation of Survival Motor Neuron exon 7

    No full text
    Spinal muscular atrophy (SMA) is the most common autosomal recessive neurodegenerative disorder of children with an incidence of 1 in 10,000 live births and a carrier frequency of 1 in 40-50 adults. SMA is attributable to a deficiency in the survival of motor neuron protein (SMN) caused in most patients by mutation of the SMN1 gene. Deficiency of SMN protein results in degeneration of anterior horn cells leading to hypotonia, symmetrical muscle weakness, fasciculation of the tongue muscles and tremors of the fingers and hands. There are two genomic copies of the SMN gene (SMN1 and SMN2) and expression of the full length SMN2 gene product has been shown to partly compensate for the lack of SMN1 product. However, a single base difference (C/T) at the sixth nucleotide in exon 7 of the SMN2 gene promotes excision of that exon from the mature transcript leading to production of only a minimal amount of full-length protein. The promotion of exon 7 inclusion in the SMN2 transcript by masking splice silencing motifs with antisense oligonucleotides (AO) is a potential intervention to increase the level of full-length SMN protein. Using a panel of modified 2'-O-methyl AO’s (phosphorothioate backbone) targeted across exon 7 of the SMN2 pre-mRNA we aimed to identify possible splice silencing motifs that would lead to exon 7 inclusion during SMN2 expression in SMA fibroblasts. While our results failed to demonstrate a strong exonic silencing motif which could be masked to promote exon 7 inclusion parallel experiments in normal control cells showed robust exon 7 skipping could be induced by AO’s targeted near the exon 7 donor splice site. Therefore, this study has provided additional insight into exon splicing as it relates to SMN exon 7 providing a potential model with which to study the functionality of alternatively spliced SMN proteins

    Antisense oligonucleotide induction of progerin in human myogenic cells

    Get PDF
    We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene ( LMNA) transcript in human myogenic cells. The progerin transcript (LMNA Δ150) lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS). HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2′-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model to investigate the role of progerin in premature muscle ageing
    corecore