53 research outputs found
A petro-chemical study of ancient mortars from the archaeological site of Kyme (Turkey)
Fourteen samples of ancient mortars (joint mortars and plasters) from the archaeological
site of Kyme (Turkey) were studied by optical microscopy (OM), X-ray fluorescence (XRF),
X-ray powder diffraction (XRPD), scanning electron microscopy (SEM-EDS) and micro-
Raman spectroscopy to obtain information about their composition.The study allowed us to
identify a new type of plaster inside the archaeological site of Kyme, not detected by previous
studies of this site, in which vegetable fibers were intentionally added to the mixture. The
combination of a petrographic analysis on thin sections by polarized light microscopy
with a chemical analysis, has allowed us to highlight similarities and differences between
the mortars and to get information about the evolution of constructive techniques in the
archaeological area
Mathematical Model to Predict the Affinity Between Aggregate/Bitumen
The stones used for the construction of road surfaces have a complex mineralogical and hence chemical composition. They are made up of several types of minerals put together. This generates a significant difference in adhesion with the bituminous binder. The aim of this study is to create a mathematical model able to predict the adhesion between bitumen and stone on the basis of contact angle measurements made on different pure minerals. The mathematical model used was developed keeping in mind the exponential bond that the minerals have with the corresponding bond angle. This model also confirmed the established fact that the lower the value of Δ, the better the adhesion between the bitumen and the aggregate
Physical mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: the case study of Pietra Cantone (southern Sardinia, Italy)
The present work aims to study the consolidating and protective chemical treatments of the Pietra Cantone, a Miocenic (lower Tortonian) limestone widely used in important monuments and historical buildings of Cagliari (southern Sardinia, Italy). Similar limestones of the same geological period have also been used in several important monuments of Mediterranean area, i.e., Malta and Gozo Islands, Matera (central Basilicata, Italy), Lecce (southern Puglia, Italy) and Balearic Islands (Spain). The Pietra Cantone limestone shows problems of chemical–physical decay, due to their petrophysical and compositional char- acteristics: high porosity (on average 28–36 vol%), low cemented muddy-carbonate matrix, presence of phyllosil- icates and sindepositional sea salts (\3%). So, after placed in the monument, this stone is easily alterable by weath- ering chemical processes (e.g., carbonate dissolution and sulfation) and also by cyclic mechanisms of crystalliza- tion/solubilization of salts and hydration/dehydration of hygroscopic phases of the clay component. To define the mineralogical-petrographic features (composition, texture) of limestone, the clay and salt crystalline phases, the optical microscope in polarized light and diffraction anal- ysis were used. To define the petrophysical characteristics (i.e., shape and size distribution of porosity, surface area(SBET), matrix microstructures, rock composition) and interactions of chemical treatments with rock, SEM–EDS analysis and N2 porosimetry with BET and BJH methods were used. To evaluate the efficacy of Na/K-silicates, ethyl silicate consolidants and protective nano-molecular silane monomer water repellent, the mechanical strengths (uni- axial compressive strength, point load and flexural resis- tance), water/helium open porosity, water absorption and vapour permeability data determined before and after the chemical treatments of the Pietra Cantone samples from monument were compared
Microclimate monitoring of Ariadne's house (Pompeii, Italy) for preventive conservation of fresco paintings
Background: Ariadne's house, located at the city center of ancient Pompeii, is of great archaeological value due to the fresco paintings decorating several rooms. In order to assess the risks for long-term conservation affecting the valuable mural paintings, 26 temperature data-loggers and 26 relative humidity data-loggers were located in four rooms of the house for the monitoring of ambient conditions. Results: Data recorded during 372 days were analyzed by means of graphical descriptive methods and analysis of variance (ANOVA). Results revealed an effect of the roof type and number of walls of the room. Excessive temperatures were observed during the summer in rooms covered with transparent roofs, and corrective actions were taken. Moreover, higher humidity values were recorded by sensors on the floor level. Conclusions: The present work provides guidelines about the type, number, calibration and position of thermohygrometric sensors recommended for the microclimate monitoring of mural paintings in outdoor or semi-confined environments. © 2012 Merello et al.; licensee Chemistry Central Ltd.This work was partially supported by the Spanish Government (Ministerio de Ciencia e Innovacion) under projects HAR2010-21944-C02-01 and HAR2010-21944-C02-02.Merello GimĂ©nez, P.; GarcĂa Diego, FJ.; Zarzo CastellĂł, M. (2012). Microclimate monitoring of Ariadne's house (Pompeii, Italy) for preventive conservation of fresco paintings. Chemistry Central Journal. 6:145-161. https://doi.org/10.1186/1752-153X-6-145S1451616Ribera A, Olcina M, Ballester C: Pompeya Bajo Pompeya, las Excavaciones en la Casa de Ariadna. Valencia: FundaciĂłn MARQ; 2007.World Monuments Fund: World Monuments Watch: 100 Most Endangered Sites. New York: World Monuments Fund; 1996.Anter KF: Colours in Pompeiian cityscape: Adding pieces to the puzzle. Color Res Appl 2006,31(4):331–340.Harris J: Protecting Pompeii and the Italian heritage in 2012. http://www.i-italy.org/bloggers/18935/protecting-pompeii-and-italian-heritage-2012Augusti S: La Tecnica Dell’antica Pittura Parietale Pompeiana. Napoli: Gaetano Macchiaroli Editore; 1950.Miriello D, Barca D, Bloise A, Ciarallo A, Crisci GM, De Rose T, Gattuso C, Gazineo F, La Russa MF: Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis. J Arch Sci 2010, 37:2207–2223.Castriota M, Cosco V, Barone T, De Santo G, Carafa P, Cazzanelli E: Micro-Raman characterizations of Pompei’s mortars. J Raman Spectrosc 2008,39(2):295–301.Maguregui M, Knuutinen U, Castro K, Madariaga JM: Raman spectroscopy as a tool to diagnose the impact and conservation state of Pompeian second and fourth style wall paintings exposed to diverse environments (House of Marcus Lucretius). J Raman Spectrosc 2010,41(11):1400–1409.Genestar C, Pons C, Más A: Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain). Anal Chim Acta 2006, 557:373–379.Duran A, Perez-Maqueda LA, Poyato J, Perez-Rodriguez JL: A thermal study approach to roman age wall painting mortars. J Therm Anal Calorim 2010,99(3):803–809.PĂ©rez MC, GarcĂa Diego F-J, Merello P, D’Antoni P, Fernández Navajas A, Ribera Lacomba A, Ferrazza L, PĂ©rez Miralles J, BarĂł JL, Merce P, D’Antoni H, Curiel Esparza J: Ariadne’s house (Pompeii, Italy) wall paintings: a multidisciplinary study of its present state focused on a future restoration and preventive conservation. Mater Constr in pressBernardi A: Microclimate in the British Museum. London. Museum Manag Curat 1990, 9:169–182.Bernardi A, Camuffo D: Microclimate in the Chiericati Palace Municipal Museum. Vicenza. Museum Manag Curat 1995, 14:5–18.Camuffo D, Bernardi A, Sturaro G, Valentino A: The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery. Florence. J Cult Herit 2002, 3:155–161.La Gennusa M, Rizzo G, Scaccianoce G, Nicoletti F: Control of indoor environments in heritage buildings: Experimental measurements in an old Italian museum and proposal of a methodology. J Cult Herit 2005,6(2):147–155.Camuffo D, Sturaro G, Valentino A: Thermodynamic exchanges between the external boundary layer and the indoor microclimate at the Basilica of Santa Maria Maggiore, Rome, Italy: the problem of conservation of ancient works of art. Bound Lay Meteorol 1999, 92:243–262.Tabunschikov Y, Brodatch M: Indoor air climate requirements for Russian churches and cathedrals. Indoor Air 2004,14(Suppl 7):168–174.Loupa G, Charpantidou E, Kioutsioukis I, Rapsomanikis S: Indoor microclimate, ozone and nitrogen oxides in two medieval churches in Cyprus. Atmos Environ 2006, 40:7457–7466.Vuerich E, Malaspina F, Barazutti M, Georgiadis T, Nardino M: Indoor measurements of microclimate variables and ozone in the church of San Vincenzo (Monastery of Bassano Romano – Italy): a pilot study. Microchem J 2008, 88:218–223.GarcĂa-Diego F-J, Zarzo M: Microclimate monitoring by multivariate statistical control: the renaissance frescoes of the cathedral of valencia (Spain). J Cult Herit 2010,11(3):339–344.Zarzo M, Fernández-Navajas A, GarcĂa-Diego F-J: Long-term monitoring of fresco paintings in the Cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors 2011,11(9):8685–8710.Maekawa S, Lambert F, Meyer J: Environmental monitoring at Tiwanaku. Mater Res Soc Symp Proc 1995, 352:885–892.Lillie M, Smith R, Reed J, Inglis R: Southwest Scottish Crannogs: using in situ studies to assess preservation in wetland archaeological contexts. J Archaeol Sci 2008,35(7):1886–1900.Verdecchia F, Zoccatelli C, Norelli E, Miandro R: Integrated monitoring network for surface deformation in Capo Colonna archaeological area, Crotone. Italy. IAHS-AISH P 2010, 339:345–351.Nava S, Becherini F, Bernardi A, Bonazza A, Chiari M, GarcĂa-Orellana I, Lucarelli F, Ludwig N, Migliori A, Sabbioni C, Udisti R, Valli G, Vecchi R: An integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment: the case study of Michelozzo’s Courtyard in Florence (Italy). Sci Total Environ 2010,408(6):1403–1413.Hygrochron Temperature/Humidity Logger iButton with 8KB Data-Log Memory. Maxim Integrated Products. http://datasheets.maxim-ic.com/en/ds/DS1923.pdfTemperature Logger iButton with 8KB Data-Log Memory. Maxim Integrated Products. http://datasheets.maxim-ic.com/en/ds/DS1922L-DS1922T.pdfVisco G, Plattner SH, Fortini P, Di Giovanni S, Sammartino MP: Microclimate monitoring in the Carcer Tullianum: temporal and spatial correlation and gradients evidenced by multivariate analysis; first campaign. Chem Cent J 2012,6(Suppl 2):S11.UNI 10829: Works of Art of Historical Importance. Ambient Conditions for the Conservation. Measurement and Analysis. Milano: UNI Ente Nazionale Italiano di Unificazione; 1999.DM 10/2001: Atto di Indirizzo sui Criteri Tecnico-scientifici e Sugli Standard di Funzionamento e Sviluppo dei Musei. Ministero per i Beni e le AttivitĂ Culturali. Gazzeta Ufficiale della Repubblica Italiana (Official Bulletin of Italian Republica), Rome (Italy); 2001. DL 112/1998 art. 150 comma 6Camuffo D: Microclimate for Cultural Heritage. Amsterdam: Elsevier Science; 1998.ASTM E 104–02: Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions. West Conshohocken, PA: ASTM Intl; 2012.Statgraphics Software. http://www.statgraphics.ne
Nullit\ue0 dei contratti collettivi di lavoro
Il contributo esamina le problematiche legate alla contrattazione collettiva nel pubblico impiego e si sofferma in particolare sul tema delle invalidit\ue0 della contrattazione collettiva per contrasti di vario tipo con la contrattazione superiore o con norme imperative di legge. Dopo aver ricordato come l'art. 40 d.lg. 165/2001 preveda la nullit\ue0 delle clausole dei contratti integrativi difformi , si tratta la questione relativa all'ampiezza del concetto di difformit\ue0. Pone inoltre il quesito se la nullit\ue0 delle singole clausole comporti la nullit\ue0 dell'intero contratto. Il contributo rilevate le differenze dei sistemi di contrattazione nei settori pubblico e privato, si sofferma sulla questione della responsabilit\ue0 civile e contabile dei dirigenti che abbiano stipulato o applicato contratti nulli
Balancing Systems and Flexibility Tools in European Gas Markets
This report investigates on the creation of wholesale markets for natural gas, viewed as a consequence of balancing needs following market liberalization
What future for European energy networks?
European energy networks are experiencing a wave of changes of ownership. Does this fact have a consequence from a regulatory point of view
- …