209 research outputs found

    Demonstration of the Formation of the Caffeine-Dichloromethane-water Emulsion using Quantum Chemistry

    Full text link
    Researchers have been concerned with the subsequent study of caffeine extraction. The objective of this article was to demonstrate how the caffeine-dichloromethane-water emulsion is formed. We use the theory of the electron transfer coefficient (ETC) as the cornerstone of our research. All the simulations of the interactions of the substances involved were calculated with the hyperchem simulator. The emulsion is formed because the ETC = 36,196 of the caffeine-CH2Cl2 interaction is the lowest of the cross-band interactions of the mixture. It will expect massive amounts of caffeine emulsified with CH2Cl2 and water. In conclusion, the gravitational well and the quantum well of caffeine coincide in being the lowest of all the wells calculated. It means that both CH2Cl2 and H2O will not destroy caffeine. That is, caffeine will be kept as a pure substance even after extraction with these two solvents. Although CH2Cl2 extracts more caffeine, due to its low ETC, the product for human consumption can be contaminated

    Impact of Phytoplankton on the Biogeochemical Cycling of Iron in Subantarctic Waters Southeast of New Zealand During FeCycle

    Get PDF
    During austral summer 2003, we tracked a patch of surface water infused with the tracer sulfur hexafluoride, but without addition of Fe, through subantarctic waters over 10 days in order to characterize and quantify algal Fe pools and fluxes to construct a detailed biogeochemical budget. Nutrient profiles characterized this patch as a high-nitrate, low-silicic acid, low-chlorophyll (HNLSiLC) water mass deficient in dissolved Fe. The low Fe condition was confirmed by several approaches: shipboard iron enrichment experiments and physiological indices of Fe deficiency (F(v)/F(m) \u3c 0.25, Ferredoxin Index \u3c 0.2). During FeCycle, picophytoplankton (0.2-2 mu m) and nanophytoplankton (2-20 mu m) each contributed \u3e40% of total chlorophyll. Whereas the picophytoplankton accounted for similar to 50% of total primary production, they were responsible for the majority of community iron uptake in the mixed layer. Thus ratios of 55 Fe: 14 C uptake were highest for picophytoplankton (median: 17 mu mol:mol) and declined to similar to 5 mu mol: mol for the larger algal size fractions. A pelagic Fe budget revealed that picophytoplankton were the largest pool of algal Fe (\u3e90%), which was consistent with the high (similar to 80%) phytoplankton Fe demand attributed to them. However, Fe regenerated by herbivory satisfied only similar to 20% of total algal Fe demand. This iron regeneration term increased to 40% of algal Fe demand when we include Fe recycled by bacterivory. As recycled, rather than new, iron dominated the pelagic iron budget (Boyd et al., 2005), it is highly unlikely that the supply of new Fe would redress the imbalance between algal Fe demand and supply. Reasons for this imbalance may include the overestimation of algal iron uptake from radiotracer techniques, or a lack of consideration of other iron regeneration processes. In conclusion, it seems that algal Fe uptake cannot be supported solely by the recycling of algal iron, and may require an Fe subsidy from that regenerated by heterotrophic pathways

    FeCycle: Attempting an iron biogeochemcial budget from a mesoscale SF 6 tracer experiment in unpertutbed low iron waters

    Get PDF
    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ∌50-fold (i.e., 7-to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/ uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24)

    Melanocortin peptides protect chondrocytes from mechanically induced cartilage injury

    Get PDF
    Introduction Mechanical injury can greatly influence articular cartilage, propagating inflammation, cell injury and death – risk factors for the development of osteoarthritis. Melanocortin peptides and their receptors mediate anti-inflammatory and pro-resolving mechanisms in chondrocytes. This study aimed to investigate the potential chondroprotective properties of α-MSH and [DTRP8]-Îł-MSH in mechanically injured cartilage explants, their ability to inhibit pro-inflammatory and stimulate anti-inflammatory cytokines in in situ and in freshly isolated articular chondrocytes. Methods The effect of melanocortins on in situ chondrocyte viability was investigated using confocal laser scanning microscopy of bovine articular cartilage explants, subjected to a single blunt impact (1.14 N, 6.47 kPa) delivered by a drop tower. Chondroprotective effects of α-MSH, [DTRP8]-Îł-MSH and dexamethasone on cytokine release by TNF-α-activated freshly isolated articular chondrocytes/mechanically injured cartilage explants were investigated by ELISA. Results A single impact to cartilage caused discreet areas of chondrocyte death, accompanied by pro-inflammatory cytokine release; both parameters were modulated by α-MSH, [DTRP8]-Îł-MSH and dexamethasone. Melanocortin pre-treatment of TNF-α-stimulated freshly isolated chondrocytes resulted in a bell-shaped inhibition in IL-1ÎČ, IL-6 and IL-8, and elevation of IL-10 production. The MC3/4 antagonist, SHU9119, abrogated the effect of [DTRP8]-Îł-MSH but not α-MSH on cytokine release. Conclusion Melanocortin peptide pre-treatment prevented chondrocyte death following mechanical impact to cartilage and led to a marked reduction of pro-inflammatory cytokines, whilst prompting the production of anti-inflammatory/pro-resolving cytokine IL-10. Development of small molecule agonists towards melanocortin receptors could thus be a viable approach for preventing chondrocyte inflammation and death within cartilage and represent an alternative approach for the treatment of osteoarthritis

    Pin1 and neurodegeneration: a new player for prion disorders?

    Get PDF
    Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders

    Temporal rate is not a distinct perceptual metric.

    Get PDF
    yesSensory adaptation experiments have revealed the existence of ‘rate after-effects’ - adapting to a relatively fast rate makes an intermediate test rate feel slow, and adapting to a slow rate makes the same moderate test rate feel fast. The present work aims to deconstruct the concept of rate and clarify how exactly the brain processes a regular sequence of sensory signals. We ask whether rate forms a distinct perceptual metric, or whether it is simply the perceptual aggregate of the intervals between its component signals. Subjects were exposed to auditory or visual temporal rates (a ‘slow’ rate of 1.5 Hz and a ‘fast’ rate of 6 Hz), before being tested with single unfilled intervals of varying durations. Results show adapting to a given rate strongly influences the perceived duration of a single empty interval. This effect is robust across both interval reproduction and duration discrimination judgments. These findings challenge our understanding of rate perception. Specifically, they suggest that contrary to some previous assertions, the perception of sequence rate is strongly influenced by the perception of the sequence’s component duration intervals.This work was supported by a Wellcome Trust [WT097387] grant to NW

    Increased temporal sensitivity for threat: A Bayesian generalized linear mixed modeling approach.

    Get PDF
    People overestimate the duration of threat-related facial expressions, and this effect increases with self-reported fearfulness (Tipples in Emotion, 8, 127-131, 2008, Emotion, 11, 74-80, 2011). One explanation (Cheng, Tipples, Narayanan, & Meck in Timing and Time Perception, 4, 99-122, 2016) for this effect is that emotion increases the rate at which temporal information accumulates. Here I tested whether increased overestimation for threat-related facial expressions in high fearfulness generalizes to pictures of threatening animals. A further goal was to illustrate the use of Bayesian generalized linear mixed modeling (GLMM) to gain more accurate estimates of temporal performance, including estimates of temporal sensitivity. Participants (N = 53) completed a temporal bisection task in which they judged the presentation duration for pictures of threatening animals (poised to attack) and nonthreatening animals. People overestimated the duration of threatening animals, and the effect increased with self-reported fearfulness. In support of increased accumulation of pacemaker ticks due to threat, temporal sensitivity was higher for threat than for nonthreat images. Analyses indicated that temporal sensitivity effects may have been absent in previous research because of the method used to calculate the index of temporal sensitivity. The benefits of using Bayesian GLMM are highlighted, and researchers are encouraged to use this method as the first option for analyzing temporal bisection data
    • 

    corecore