66 research outputs found
Definition of display/control requirements for assault transport night/adverse weather capability
A Helicopter Night Vision System was developed to improve low-altitude night and/or adverse weather assult transport capabilities. Man-in-the-loop simulation experiments were performed to define the minimum display and control requirements for the assult transport mission and investigate forward looking infrared sensor requirements, along with alternative displays such as panel mounted displays (PMD) helmet mounted displays (HMD), and integrated control display units. Also explored were navigation requirements, pilot/copilot interaction, and overall cockpit arrangement. Pilot use of an HMD and copilot use of a PMD appear as both the preferred and most effective night navigation combination
The cases of June 2000, November 2002 and September 2002 as examples of Mediterranean floods
International audienceFour flood events that affected three different countries are here described in terms of meteorological genesis and in terms of consequences on the population and on the territory. Each event is a good representative of a class of phenomena that produce important effects on the urban and extra-urban tissue and that must be taken into account in an optic of civil protection and risk evaluation. This is the subject of the HYDROPTIMET project, part of the Interreg IIIB program, which is collocated in the framework of the prevention of natural hazards and, in particular, those related to severe meteo-hydrological events. This paper aims at being a general introduction of the four events which are the subject of more detailed studies, already published or under submission
Performance evaluation of MeteoTracker mobile sensor for outdoor applications
The morphological complexity of urban environments results in a high spatial and temporal variability of the urban microclimate. The consequent demand for high-resolution atmospheric data remains a challenge for atmospheric research and operational application. The recent widespread availability and increasing adoption of low-cost mobile sensing offer the opportunity to integrate observations from conventional monitoring networks with microclimatic and air pollution data at a finer spatial and temporal scale. So far, the relatively low quality of the measurements and outdoor performance compared to conventional instrumentation has discouraged the full deployment of mobile sensors for routine monitoring. The present study addresses the performance of a commercial mobile sensor, the MeteoTracker (IoTopon Srl), recently launched on the market to quantify the microclimatic characteristics of the outdoor environment. The sensor follows the philosophy of the Internet of Things technology, being low cost, having an automatic data flow via personal smartphones and online data sharing, supporting user-friendly software, and having the potential to be deployed in large quantities. In this paper, the outdoor performance is evaluated through tests aimed at quantifying (i) the intra-sensor variability under similar atmospheric conditions and (ii) the outdoor accuracy compared to a reference weather station under sub-optimal (in a fixed location) and optimal (mobile) sensor usage. Data-driven corrections are developed and successfully applied to improve the MeteoTracker data quality. In particular, a recursive method for the simultaneous improvement of relative humidity, dew point, and humidex index proves to be crucial for increasing the data quality. The results mark an intra-sensor variability of approximately ± 0.5 °C for air temperature and ± 1.2 % for the corrected relative humidity, both of which are within the declared sensor accuracy. The sensor captures the same atmospheric variability as the reference sensor during both fixed and mobile tests, showing positive biases (overestimation) for both variables. Through the mobile test, the outdoor accuracy is observed to be between ± 0.3 to ± 0.5 °C for air temperature and between ± 3 % and ± 5 % for the relative humidity, ranking the MeteoTracker in the real accuracy range of similar commercial sensors from the literature and making it a valid solution for atmospheric monitoring.</p
COMPOSTI ISOTIOCIANATI E ISOSELENCIANATI
La presente invenzione attiene una nuova famiglia di composti isotiocianati e isoselencianati idonei ad essere utilizzati come:
- farmaci innovativi con spiccato profilo di efficacia terapeutica, tali da consentire un miglior approccio alla patologia tumorale rispetto ai farmaci attuali,
- teranostici per la contemporanea diagnosi e cura della patologia oncologica;
- sonde fluorescenti per l'osservazione diretta di specifici organuli cellulari in applicazioni biomediche
Overview of the Anticancer Profile of Avenanthramides from Oat
Cancer represents one of the leading causes of death worldwide. Progresses in treatment of cancer have continued at a rapid pace. However, undesirable side effects and drug resistance remain major challenges for therapeutic success. Natural products represent a valuable starting point to develop new anticancer strategies. Polyphenols, well-known as antioxidant, exert anticancer effects through the modulation of multiple pathways and mechanisms. Oat (Avena sativa L., Poaceae) is a unique source of avenanthramides (AVAs), a group of polyphenolic alkaloids, considered as its signature compounds. The present review aims to offer a comprehensive and critical perspective on the chemopreventive and chemotherapeutic potential of AVAs. AVAs prevent cancer mainly by blocking reactive species. Moreover, they exhibit potential therapeutic activity through the modulation of different pathways including the activation of apoptosis and senescence, the block of cell proliferation, and the inhibition of epithelial mesenchymal transition and metastatization. AVAs are promising chemopreventive and anticancer phytochemicals, which need further clinical trials and toxicological studies to define their efficacy in preventing and reducing the burden of cancer diseases
Isothiocyanate synthetic analogs: biological activities, structure-activity relationships and synthetic strategies.
Sulforaphane is a natural product that is constantly under biological investigation for its unique biological properties. This naturally occurring isothiocyanate (ITC) and its analogs are the main components of cruciferous vegetables, such as cauliflower, watercress, broccoli, cabbage, Brussels sprouts, widely used as chemopreventive agents. Due to their interesting biological profiles, natural ITCs have been exploited as starting point to develop new synthetic analogs. The present mini-review briefly highlights the most important biological actions of selected new synthetic ITCs focusing on their structure-activity relationships and related synthetic strategies
- …