303 research outputs found

    An approach to anomalous diffusion in the n-dimensional space generated by a self-similar Laplacian

    Full text link
    We analyze a quasi-continuous linear chain with self-similar distribution of harmonic interparticle springs as recently introduced for one dimension (Michelitsch et al., Phys. Rev. E 80, 011135 (2009)). We define a continuum limit for one dimension and generalize it to n=1,2,3,..n=1,2,3,.. dimensions of the physical space. Application of Hamilton's (variational) principle defines then a self-similar and as consequence non-local Laplacian operator for the nn-dimensional space where we proof its ellipticity and its accordance (up to a strictly positive prefactor) with the fractional Laplacian −(−Δ)α2-(-\Delta)^\frac{\alpha}{2}. By employing this Laplacian we establish a Fokker Planck diffusion equation: We show that this Laplacian generates spatially isotropic L\'evi stable distributions which correspond to L\'evi flights in nn-dimensions. In the limit of large scaled times ∌t/rα>>1\sim t/r^{\alpha} >>1 the obtained distributions exhibit an algebraic decay ∌t−nα→0\sim t^{-\frac{n}{\alpha}} \rightarrow 0 independent from the initial distribution and spacepoint. This universal scaling depends only on the ratio n/αn/\alpha of the dimension nn of the physical space and the L\'evi parameter α\alpha.Comment: Submitted manuscrip

    Unconstrained Hamiltonian formulation of General Relativity with thermo-elastic sources

    Get PDF
    A new formulation of the Hamiltonian dynamics of the gravitational field interacting with(non-dissipative) thermo-elastic matter is discussed. It is based on a gauge condition which allows us to encode the six degrees of freedom of the ``gravity + matter''-system (two gravitational and four thermo-mechanical ones), together with their conjugate momenta, in the Riemannian metric q_{ij} and its conjugate ADM momentum P^{ij}. These variables are not subject to constraints. We prove that the Hamiltonian of this system is equal to the total matter entropy. It generates uniquely the dynamics once expressed as a function of the canonical variables. Any function U obtained in this way must fulfil a system of three, first order, partial differential equations of the Hamilton-Jacobi type in the variables (q_{ij},P^{ij}). These equations are universal and do not depend upon the properties of the material: its equation of state enters only as a boundary condition. The well posedness of this problem is proved. Finally, we prove that for vanishing matter density, the value of U goes to infinity almost everywhere and remains bounded only on the vacuum constraints. Therefore the constrained, vacuum Hamiltonian (zero on constraints and infinity elsewhere) can be obtained as the limit of a ``deep potential well'' corresponding to non-vanishing matter. This unconstrained description of Hamiltonian General Relativity can be useful in numerical calculations as well as in the canonical approach to Quantum Gravity.Comment: 29 pages, TeX forma

    Solitary and compact-like shear waves in the bulk of solids

    Get PDF
    We show that a model proposed by Rubin, Rosenau, and Gottlieb [J. Appl. Phys. 77 (1995) 4054], for dispersion caused by an inherent material characteristic length, belongs to the class of simple materials. Therefore, it is possible to generalize the idea of Rubin, Rosenau, and Gottlieb to include a wide range of material models, from nonlinear elasticity to turbulence. Using this insight, we are able to fine-tune nonlinear and dispersive effects in the theory of nonlinear elasticity in order to generate pulse solitary waves and also bulk travelling waves with compact support

    Entropy Identity and Material-Independent Equilibrium Conditions in Relativistic Thermodynamics

    Full text link
    On the basis of the balance equations for energy-momentum, spin, particle and entropy density, an approach is considered which represents a comparatively general framework for special- and general-relativistic continuum thermodynamics. In the first part of the paper, a general entropy density 4-vector, containing particle, energy-momentum, and spin density contributions, is introduced which makes it possible, firstly, to judge special assumptions for the entropy density 4-vector made by other authors with respect to their generality and validity and, secondly, to determine entropy supply and entropy production. Using this entropy density 4-vector, in the second part, material-independent equilibrium conditions are discussed. While in literature, at least if one works in the theory of irreversible thermodynamics assuming a Riemann space-time structure, generally thermodynamic equilibrium is determined by introducing a variety of conditions by hand, the present approach proceeds as follows: For a comparatively wide class of space-time geometries the necessary equilibrium conditions of vanishing entropy supply and entropy production are exploited and, afterwards, supplementary conditions are assumed which are motivated by the requirement that thermodynamic equilibrium quantities have to be determined uniquely.Comment: Research Paper, 30 page

    Cherenkov radiation in a gravitational wave background

    Get PDF
    A covariant criterion for the Cherenkov radiation emission in the field of a non-linear gravitational wave is considered in the framework of exact integrable models of particle dynamics and electromagnetic wave propagation. It is shown that vacuum interacting with curvature can give rise to Cherenkov radiation. The conically shaped spatial distribution of radiation is derived and its basic properties are discussed.Comment: LaTeX file, no figures, 19 page

    Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations

    Full text link
    In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the "helical staircase", which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan's discussion, since he argued - but never proved - that the helical staircase should correspond to a continuum with constant pressure and constant internal torque. We discuss where in physics the helical staircase is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d theories of gravity, namely a) in 3d Einstein-Cartan gravity - this is Cartan's case of constant pressure and constant intrinsic torque - and b) in 3d Poincare gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the gauge field theory of dislocations of Lazar et al., as we prove for the first time by arranging a suitable distribution of screw dislocations. Our main emphasis is on the discussion of dislocation field theory.Comment: 31 pages, 8 figure

    A gauge theoretic approach to elasticity with microrotations

    Full text link
    We formulate elasticity theory with microrotations using the framework of gauge theories, which has been developed and successfully applied in various areas of gravitation and cosmology. Following this approach, we demonstrate the existence of particle-like solutions. Mathematically this is due to the fact that our equations of motion are of Sine-Gordon type and thus have soliton type solutions. Similar to Skyrmions and Kinks in classical field theory, we can show explicitly that these solutions have a topological origin.Comment: 15 pages, 1 figure; revised and extended version, one extra page; revised and extended versio

    Functional Integration Approach to Hysteresis

    Full text link
    A general formulation of scalar hysteresis is proposed. This formulation is based on two steps. First, a generating function g(x) is associated with an individual system, and a hysteresis evolution operator is defined by an appropriate envelope construction applied to g(x), inspired by the overdamped dynamics of systems evolving in multistable free energy landscapes. Second, the average hysteresis response of an ensemble of such systems is expressed as a functional integral over the space G of all admissible generating functions, under the assumption that an appropriate measure m has been introduced in G. The consequences of the formulation are analyzed in detail in the case where the measure m is generated by a continuous, Markovian stochastic process. The calculation of the hysteresis properties of the ensemble is reduced to the solution of the level-crossing problem for the stochastic process. In particular, it is shown that, when the process is translationally invariant (homogeneous), the ensuing hysteresis properties can be exactly described by the Preisach model of hysteresis, and the associated Preisach distribution is expressed in closed analytic form in terms of the drift and diffusion parameters of the Markovian process. Possible applications of the formulation are suggested, concerning the interpretation of magnetic hysteresis due to domain wall motion in quenched-in disorder, and the interpretation of critical state models of superconducting hysteresis.Comment: 36 pages, 9 figures, to be published on Phys. Rev.
    • 

    corecore