1,023 research outputs found
Open Petri Nets
The reachability semantics for Petri nets can be studied using open Petri
nets. For us an "open" Petri net is one with certain places designated as
inputs and outputs via a cospan of sets. We can compose open Petri nets by
gluing the outputs of one to the inputs of another. Open Petri nets can be
treated as morphisms of a category , which
becomes symmetric monoidal under disjoint union. However, since the composite
of open Petri nets is defined only up to isomorphism, it is better to treat
them as morphisms of a symmetric monoidal double category
. We describe two forms of semantics
for open Petri nets using symmetric monoidal double functors out of
. The first, an operational semantics,
gives for each open Petri net a category whose morphisms are the processes that
this net can carry out. This is done in a compositional way, so that these
categories can be computed on smaller subnets and then glued together. The
second, a reachability semantics, simply says which markings of the outputs can
be reached from a given marking of the inputs.Comment: 30 pages, TikZ figure
Void Formation Study of Flip Chip in Package Using No-Flow Underfill
©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TEPM.2008.2002951The advanced flip chip in package (FCIP) process using no-flow underfill material for high I/O density and fine-pitch interconnect applications presents challenges for an assembly process that must achieve high electrical interconnect yield and high reliability performance. With respect to high reliability, the voids formed in the underfill between solder bumps or inside the solder bumps during the no-flow underfill assembly process of FCIP devices have been typically considered one of the critical concerns affecting assembly yield and reliability performance. In this paper, the plausible causes of underfill void formation in FCIP using no-flow underfill were investigated through systematic experimentation with different types of test vehicles. For instance, the effects of process conditions, material properties, and chemical reaction between the solder bumps and no-flow underfill materials on the void formation behaviors were investigated in advanced FCIP assemblies. In this investigation, the chemical reaction between solder and underfill during the solder wetting and underfill cure process has been found to be one of the most significant factors for void formation in high I/O and fine-pitch FCIP assembly using no-flow underfill materials
Quantum simulation of spin ordering with nuclear spins in a solid state lattice
An experiment demonstrating the quantum simulation of a spin-lattice
Hamiltonian is proposed. Dipolar interactions between nuclear spins in a solid
state lattice can be modulated by rapid radio-frequency pulses. In this way,
the effective Hamiltonian of the system can be brought to the form of an
antiferromagnetic Heisenberg model with long range interactions. Using a
semiconducting material with strong optical properties such as InP, cooling of
nuclear spins could be achieved by means of optical pumping. An additional
cooling stage is provided by adiabatic demagnetization in the rotating frame
(ADRF) down to a nuclear spin temperature at which we expect a phase transition
from a paramagnetic to antiferromagnetic phase. This phase transition could be
observed by probing the magnetic susceptibility of the spin-lattice. Our
calculations suggest that employing current optical pumping technology,
observation of this phase transition is within experimental reach.Comment: 11 pages, 3 figues; Published versio
Tracking the implementation of NCCLS M100-S12 expanded-spectrum cephalosporin MIC breakpoints for nonmeningeal isolates of Streptococcus pneumoniae by clinical laboratories in the United States during 2002 and 2003
BACKGROUND: The Performance Standards for Antimicrobial Susceptibility Testing, Twelfth Informational Supplement, M100-S12, published by the National Committee for Clinical Laboratory Standards (NCCLS) in January 2002 introduced distinct minimum inhibitory concentration (MIC) interpretative breakpoints for ceftriaxone, cefotaxime, and cefepime for nonmeningeal isolates of Streptococcus pneumoniae. Previously, a single set of interpretative breakpoints was used for both meningeal and nonmeningeal isolates. METHODS: To estimate the rate of adoption of the M100-S12 interpretive breakpoints by clinical laboratories, antimicrobial susceptibility test results for ceftriaxone and cefotaxime from nonmeningeal S. pneumoniae isolates were studied using data collected from January 2002 to June 2003 by The Surveillance Network(® )Database – USA (TSN(®)), an electronic surveillance database. RESULTS: Of the 262 laboratories that provided data that could be evaluated, 67.6% had adopted the M100-S12 breakpoints one and one-half years after they were published. CONCLUSIONS: The NCCLS M100-S12 recommendation to interpret MICs to expanded-spectrum cephalosporins using two distinct sets of breakpoints for meningeal and nonmeningeal isolates of S. pneumoniae was steadily implemented by clinical microbiology laboratories in the United States following their initial publication in January 2002. The use of these new breakpoints more accurately reflects the clinical activities of expanded-spectrum cephalosporins than did the single set of interpretative breakpoints previously used for both meningeal and nonmeningeal isolates
- …