20 research outputs found

    Feshbach resonances in mixtures of ultracold 6^6Li and 87^{87}Rb gases

    Full text link
    We report on the observation of two Feshbach resonances in collisions between ultracold 6^6Li and 87^{87}Rb atoms in their respective hyperfine ground states ∣F,mF>=∣1/2,1/2>|F,m_F>=|1/2,1/2> and ∣1,1>|1,1>. The resonances show up as trap losses for the 6^6Li cloud induced by inelastic Li-Rb-Rb three-body collisions. The magnetic field values where they occur represent important benchmarks for an accurate determination of the interspecies interaction potentials. A broad Feshbach resonance located at 1066.92 G opens interesting prospects for the creation of ultracold heteronuclear molecules. We furthermore observe a strong enhancement of the narrow p-wave Feshbach resonance in collisions of 6^6Li atoms at 158.55 G in the presence of a dense 87^{87}Rb cloud. The effect of the 87^{87}Rb cloud is to introduce Li-Li-Rb three-body collisions occurring at a higher rate than Li-Li-Li collisions.Comment: 4 pages, 3 figure

    Radiofrequency spectroscopy of 6^6Li p-wave molecules: towards photoemission spectroscopy of a p-wave superfluid

    Full text link
    Understanding superfluidity with higher order partial waves is crucial for the understanding of high-TcT_c superconductivity. For the realization of a superfluid with anisotropic order parameter, spin-polarized fermionic lithium atoms with strong p-wave interaction are the most promising candidates to date. We apply rf-spectroscopy techniques that do not suffer from severe final-state effects \cite{Perali08} with the goal to perform photoemission spectroscopy on a strongly interacting p-wave Fermi gas similar to that recently applied for s-wave interactions \cite{Stewart08}. Radiofrequency spectra of both quasibound p-wave molecules and free atoms in the vicinity of the p-wave Feshbach resonance located at 159.15\,G \cite{Schunck05} are presented. The observed relative tunings of the molecular and atomic signals in the spectra with magnetic field confirm earlier measurements realized with direct rf-association \cite{Fuchs08}. Furthermore, evidence of bound molecule production using adiabatic ramps is shown. A scheme to observe anisotropic superfluid gaps, the most direct proof of p-wave superfluidity, with 1d-optical lattices is proposed.Comment: 5 pages, 3 figure

    Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases

    Full text link
    We report on the observation of sympathetic cooling of a cloud of fermionic 6-Li atoms which are thermally coupled to evaporatively cooled bosonic 87-Rb. Using this technique we obtain a mixture of quantum-degenerate gases, where the Rb cloud is colder than the critical temperature for Bose-Einstein condensation and the Li cloud colder than the Fermi temperature. From measurements of the thermalization velocity we estimate the interspecies s-wave triplet scattering length |a_s|=20_{-6}^{+9} a_B. We found that the presence of residual rubidium atoms in the |2,1> and the |1,-1> Zeeman substates gives rise to important losses due to inelastic collisions.Comment: 4 pages, 3 figure

    Direct Measurement of intermediate-range Casimir-Polder potentials

    Full text link
    We present the first direct measurements of Casimir-Polder forces between solid surfaces and atomic gases in the transition regime between the electrostatic short-distance and the retarded long-distance limit. The experimental method is based on ultracold ground-state Rb atoms that are reflected from evanescent wave barriers at the surface of a dielectric glass prism. Our novel approach does not require assumptions about the potential shape. The experimental data confirm the theoretical prediction in the transition regime.Comment: 4 pages, 3 figure

    Highly versatile atomic micro traps generated by multifrequency magnetic field modulation

    Full text link
    We propose the realization of custom-designed adiabatic potentials for cold atoms based on multimode radio frequency radiation in combination with static inhomogeneous magnetic fields. For example, the use of radio frequency combs gives rise to periodic potentials acting as gratings for cold atoms. In strong magnetic field gradients the lattice constant can be well below 1 micrometer. By changing the frequencies of the comb in time the gratings can easily be propagated in space, which may prove useful for Bragg scattering atomic matter waves. Furthermore, almost arbitrarily shaped potential are possible such as disordered potentials on a scale of several 100 nm or lattices with a spatially varying lattice constant. The potentials can be made state selective and, in the case of atomic mixtures, also species selective. This opens new perspectives for generating tailored quantum systems based on ultra cold single atoms or degenerate atomic and molecular quantum gases.Comment: 12 pages, 6 figure
    corecore