20 research outputs found
Feshbach resonances in mixtures of ultracold Li and Rb gases
We report on the observation of two Feshbach resonances in collisions between
ultracold Li and Rb atoms in their respective hyperfine ground
states and . The resonances show up as trap losses
for the Li cloud induced by inelastic Li-Rb-Rb three-body collisions. The
magnetic field values where they occur represent important benchmarks for an
accurate determination of the interspecies interaction potentials. A broad
Feshbach resonance located at 1066.92 G opens interesting prospects for the
creation of ultracold heteronuclear molecules. We furthermore observe a strong
enhancement of the narrow p-wave Feshbach resonance in collisions of Li
atoms at 158.55 G in the presence of a dense Rb cloud. The effect of the
Rb cloud is to introduce Li-Li-Rb three-body collisions occurring at a
higher rate than Li-Li-Li collisions.Comment: 4 pages, 3 figure
Radiofrequency spectroscopy of Li p-wave molecules: towards photoemission spectroscopy of a p-wave superfluid
Understanding superfluidity with higher order partial waves is crucial for
the understanding of high- superconductivity. For the realization of a
superfluid with anisotropic order parameter, spin-polarized fermionic lithium
atoms with strong p-wave interaction are the most promising candidates to date.
We apply rf-spectroscopy techniques that do not suffer from severe final-state
effects \cite{Perali08} with the goal to perform photoemission spectroscopy on
a strongly interacting p-wave Fermi gas similar to that recently applied for
s-wave interactions \cite{Stewart08}. Radiofrequency spectra of both quasibound
p-wave molecules and free atoms in the vicinity of the p-wave Feshbach
resonance located at 159.15\,G \cite{Schunck05} are presented. The observed
relative tunings of the molecular and atomic signals in the spectra with
magnetic field confirm earlier measurements realized with direct rf-association
\cite{Fuchs08}. Furthermore, evidence of bound molecule production using
adiabatic ramps is shown. A scheme to observe anisotropic superfluid gaps, the
most direct proof of p-wave superfluidity, with 1d-optical lattices is
proposed.Comment: 5 pages, 3 figure
Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases
We report on the observation of sympathetic cooling of a cloud of fermionic
6-Li atoms which are thermally coupled to evaporatively cooled bosonic 87-Rb.
Using this technique we obtain a mixture of quantum-degenerate gases, where the
Rb cloud is colder than the critical temperature for Bose-Einstein condensation
and the Li cloud colder than the Fermi temperature. From measurements of the
thermalization velocity we estimate the interspecies s-wave triplet scattering
length |a_s|=20_{-6}^{+9} a_B. We found that the presence of residual rubidium
atoms in the |2,1> and the |1,-1> Zeeman substates gives rise to important
losses due to inelastic collisions.Comment: 4 pages, 3 figure
Direct Measurement of intermediate-range Casimir-Polder potentials
We present the first direct measurements of Casimir-Polder forces between
solid surfaces and atomic gases in the transition regime between the
electrostatic short-distance and the retarded long-distance limit. The
experimental method is based on ultracold ground-state Rb atoms that are
reflected from evanescent wave barriers at the surface of a dielectric glass
prism. Our novel approach does not require assumptions about the potential
shape. The experimental data confirm the theoretical prediction in the
transition regime.Comment: 4 pages, 3 figure
Highly versatile atomic micro traps generated by multifrequency magnetic field modulation
We propose the realization of custom-designed adiabatic potentials for cold
atoms based on multimode radio frequency radiation in combination with static
inhomogeneous magnetic fields. For example, the use of radio frequency combs
gives rise to periodic potentials acting as gratings for cold atoms. In strong
magnetic field gradients the lattice constant can be well below 1 micrometer.
By changing the frequencies of the comb in time the gratings can easily be
propagated in space, which may prove useful for Bragg scattering atomic matter
waves. Furthermore, almost arbitrarily shaped potential are possible such as
disordered potentials on a scale of several 100 nm or lattices with a spatially
varying lattice constant. The potentials can be made state selective and, in
the case of atomic mixtures, also species selective. This opens new
perspectives for generating tailored quantum systems based on ultra cold single
atoms or degenerate atomic and molecular quantum gases.Comment: 12 pages, 6 figure