12,187 research outputs found
Hidden symmetry and quantum phases in spin-3/2 cold atomic systems
Optical traps and lattices provide a new opportunity to study strongly
correlated high spin systems with cold atoms. In this article, we review the
recent progress on the hidden symmetry properties in the simplest high spin
fermionic systems with hyperfine spin , which may be realized with atoms
of Cs, Be, Ba, Ba, and Hg. A {\it generic}
SO(5) or isomorphically, ) symmetry is proved in such systems with the
s-wave scattering interactions in optical traps, or with the on-site Hubbard
interactions in optical lattices. Various important features from this high
symmetry are studied in the Fermi liquid theory, the mean field phase diagram,
and the sign problem in quantum Monte-Carlo simulations. In the s-wave quintet
Cooper pairing phase, the half-quantum vortex exhibits the global analogue of
the Alice string and non-Abelian Cheshire charge properties in gauge theories.
The existence of the quartetting phase, a four-fermion counterpart of the
Cooper pairing phase, and its competition with other orders are studied in one
dimensional spin-3/2 systems. We also show that counter-intuitively quantum
fluctuations in spin-3/2 magnetic systems are even stronger than those in
spin-1/2 systems
Breathing Oscillations in Bose - Fermi Mixing Gases with Yb atoms in the Largely Prolate Deformed Traps
We study the breathing oscillations in bose-fermi mixtures with Yb isotopes
in the largely prolate deformed trap, which are realized by Kyoto group. We
choose the three combinations of the Yb isotopes, Yb170-Yb171, Yb170-Yb173 and
Yb174-Yb173, whose boson-fermion interactions are weakly repulsive, strongly
attractive and strongly repulsive. The collective oscillations in the deformed
trap are calculated in the dynamical time-development approach, which is
formulated with the time-dependent Gross-Pitaevskii and the Vlasov equations.
We analyze the results in the time-development approach with the intrinsic
oscillation modes of the deformed system, which are obtained using the scaling
method, and show that the damping and forced-oscillation effects of the
intrinsic modes give time-variation of oscillations, especially, in the fermion
transverse mode.Comment: 27 pages, 12 figure
Isoscalar Giant Quadrupole Resonance State in the Relativistic Approach with the Momentum-Dependent Self-Energies
We study the excited energy of the isoscalar giant quadrupole resonance with
the scaling method in the relativistic many-body framework. In this calculation
we introduce the momentum-dependent parts of the Dirac self-energies arising
from the one-pion exchange on the assumption of the pseudo-vector coupling with
nucleon field. It is shown that this momentum-dependence enhances the Landau
mass significantly and thus suppresses the quadrupole resonance energy even
giving the small Dirac effective mass which causes a problem in the
momentum-independent mean-field theory.Comment: 12pages, 2 Postscript figure
Minimization of deviations of gear real tooth surfaces determined by coordinate measurements
The deviations of a gear's real tooth surface from the theoretical surface are determined by coordinate measurements at the grid of the surface. A method was developed to transform the deviations from Cartesian coordinates to those along the normal at the measurement locations. Equations are derived that relate the first order deviations with the adjustment to the manufacturing machine-tool settings. The deviations of the entire surface are minimized. The minimization is achieved by application of the least-square method for an overdetermined system of linear equations. The proposed method is illustrated with a numerical example for hypoid gear and pinion
Search for magnetic monopoles using proportional counters filled with helium gas
Slow magnetic monopoles in cosmic rays have been searched at sea level with the detector which consists of seven layers of proportional counters filled with a mixture of He + 20% CH4. The velocities and the energy losses of the incident particles are measured. The upper limit of flux for the monopoles in the velocity range of 1 x 0.001 Beta 4 x 0.001 is 2.78 x 10 to the minus 12th power square centimeters sr sec of 90% confidence level
Quantum Molecular Dynamics Approach to the Nuclear Matter Below the Saturation Density
Quantum molecular dynamics is applied to study the ground state properties of
nuclear matter at subsaturation densities. Clustering effects are observed as
to soften the equation of state at these densities. The structure of nuclear
matter at subsaturation density shows some exotic shapes with variation of the
density.Comment: 21 pages of Latex (revtex), 9 Postscript figure
Dipole Oscillations in Bose - Fermi Mixture in the Time-Dependent Grosspitaevskii and Vlasov equations
We study the dipole collective oscillations in the bose-fermi mixture using a
dynamical time-dependent approach, which are formulated with the time-dependent
Gross-Pitaevskii equation and the Vlasov equation. We find big difference in
behaviors of fermion oscillation between the time-dependent approach and usual
approaches such as the random-phase approximation and the sum-rule approach.
While the bose gas oscillates monotonously, the fermion oscillation shows a
beat and a damping. When the amplitude is not minimal, the dipole oscillation
of the fermi gas cannot be described with a simple center-of-mass motion.Comment: 17 pages text, and 15 figure
Electrothermal flow in Dielectrophoresis of Single-Walled Carbon Nanotubes
We theoretically investigate the impact of the electrothermal flow on the
dielectrophoretic separation of single-walled carbon nanotubes (SWNT). The
electrothermal flow is observed to control the motions of semiconducting SWNTs
in a sizeable domain near the electrodes under typical experimental conditions,
therefore helping the dielectrophoretic force to attract semiconducting SWNTs
in a broader range. Moreover, with the increase of the surfactant
concentration, the electrothermal flow is enhanced, and with the change of
frequency, the pattern of the electrothermal flow changes. It is shown that
under some typical experimental conditions of dielectrophoresis separation of
SWNTs, the electrothermal flow is a dominating factor in determining the motion
of SWNTs.Comment: 5 pages, 4 figures, Submitted to PR
Color Molecular-Dynamics for High Density Matter
We propose a microscopic simulation for quark many-body system based on
molecular dynamics. Using color confinement and one-gluon exchange potentials
together with the meson exchange potentials between quarks, we construct
nucleons and nuclear/quark matter. Statistical feature and the dynamical change
between confinement and deconfinement phases are studied with this molecular
dynamics simulation.Comment: 4 pages, 3 figure
- …