68 research outputs found

    Regional and local environmental conditions do not shape the response to warming of a marine habitat-forming species

    Get PDF
    The differential response of marine populations to climate change remains poorly understood. Here, we combine common garden thermotolerance experiments in aquaria and population genetics to disentangle the factors driving the population response to thermal stress in a temperate habitatforming species: the octocoral Paramuricea clavata. Using eight populations separated from tens of meters to hundreds of kilometers, which were differentially impacted by recent mortality events, we identify 25 degrees C as a critical thermal threshold. After one week of exposure at this temperature, seven of the eight populations were affected by tissue necrosis and after 30 days of exposure at this temperature, the mean % of affected colonies increased gradually from 3 to 97%. We then demonstrate the weak relation between the observed differential phenotypic responses and the local temperature regimes experienced by each population. A significant correlation was observed between these responses and the extent of genetic drift impacting each population. Local adaptation may thus be hindered by genetic drift, which seems to be the main driver of the differential response. Accordingly, conservation measures should promote connectivity and control density erosion in order to limit the impact of genetic drift on marine populations facing climate change

    Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    Get PDF
    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals

    Evaluation of a new Rapid Antimicrobial Susceptibility system for Gram-negative and Gram-positive bloodstream infections: speed and accuracy of Alfred 60AST.

    Get PDF
    BACKGROUND: Blood stream infections (BSIs) are a major cause of morbidity and mortality. The time from taking blood cultures to obtain results of antibiotic sensitivity can be up to five days which impacts patient care. The Alfred 60 AST™ can reduce laboratory time from positive culture bottle to susceptibility results from 16 to 25 h to 5-6 h, transforming patient care. To evaluate the diagnostic accuracy of a rapid antimicrobial susceptibility system, the Alfred 60 AST™, in clinical isolates from patients with BSIs and confirm time to results. 301 Gram-negative and 86 Gram-positive isolates were analysed directly from positive blood culture bottles following Gram staining. Antimicrobial susceptibility results and time-to-results obtained by rapid Alfred 60 AST system and BD Phoenix were compared . RESULTS: A total of 2196 antimicrobial susceptibility test results (AST) were performed: 1863 Gram-negative and 333 Gram-positive. AST categorical agreement (CA) for Alfred 60 AST™ was 95% (1772/1863) for Gram-negative and 89% (295/333) for Gram-positive isolates. Gram-negative CA: ampicillin 96% (290/301); ciprofloxacin 95% (283/297); ceftriaxone 96% (75/78); meropenem 97% (288/297); piperacillin-tazobactam 95% (280/295); gentamicin 94% (279/297) and amikacin 93% (277/298). The median time to susceptibility results from blood culture flagging positive was 6.3 h vs 20 h (p < 0.01) for Alfred system vs BD Phoenix™. CONCLUSION: Alfred 60 AST system greatly reduced time to antimicrobial susceptibility results in Gram-negative and Gram-positive BSIs with good performance and cost, particularly for Gram-negative bacteraemia

    An evaluation of staining techniques for marking daily growth in scleractinian corals

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 440 (2013): 126-131, doi:10.1016/j.jembe.2012.12.003.In situ skeletal markers have been widely used to quantify skeletal growth rates of scleractinian corals on sub-annual time-scales. Nevertheless, an evaluation of different techniques, both in terms of their efficacy and potential impacts on the growth process itself, has not been undertaken. Here the effects of exposure to four different dyes (alizarin, alizarin complexone, calcein, oxytetracycline) and isotope spikes (Ba and Sr) on the growth rates of scleractinian corals are compared. Oxytetracycline increased coral growth. Alizarin, alizarin complexone, calcein, and Sr and Ba isotope spikes had no significant effect on coral growth, but polyp extension appeared reduced during exposure to alizarin and alizarin complexone. Calcein provided a more intense fluorescent mark than either alizarin or alizarin complexone. Isotope spikes were challenging to locate using isotope ratio analysis techniques. Thus, calcein appears best suited for marking short-term calcification increments in corals, while a combination of alizarin or alizarin complexone and calcein may be useful for dual labeling experiments as there is little overlap in their fluorescence spectra.Funding for this work was provided by a Lizard Island Doctoral Fellowship, the Ocean Life Institute, NSF OCE-1041106, and an International Society for Reef Studies / Ocean Conservancy Fellowship. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship and a National Science Foundation International Post-Doctoral Fellowship

    A well-kept treasure at depth: precious red coral rediscovered in Atlantic deep coral gardens (SW Portugal) after 300 years

    Get PDF
    The highly valuable red coral Corallium rubrum is listed in several Mediterranean Conventions for species protection and management since the 1980s. Yet, the lack of data about its Atlantic distribution has hindered its protection there. This culminated in the recent discovery of poaching activities harvesting tens of kg of coral per day from deep rocky reefs off SW Portugal. Red coral was irregularly exploited in Portugal between the 1200s and 1700s, until the fishery collapsed. Its occurrence has not been reported for the last 300 years.info:eu-repo/semantics/publishedVersio

    Low Dynamics, High Longevity and Persistence of Sessile Structural Species Dwelling on Mediterranean Coralligenous Outcrops

    Get PDF
    There is still limited understanding of the processes underlying benthic species dynamics in marine coastal habitats, which are of disproportionate importance in terms of productivity and biodiversity. The life-history traits of long-lived benthic species in these habitats are particularly poorly documented. In this study, we assessed decadal patterns of population dynamics for ten sponge and anthozoan species that play key structural roles in coralligenous outcrops (∼25 m depth) in two areas of the NW Mediterranean Sea. This study was based on examination of a unique long-term photographic series, which allowed analysis of population dynamics over extensive spatial and time spans for the very first time. Specifically, 671 individuals were censused annually over periods of 25-, 15-, and 5-years. This long-term study quantitatively revealed a common life-history pattern among the ten studied species, despite the fact they present different growth forms. Low mortality rates (3.4% yr−1 for all species combined) and infrequent recruitment events (mean value of 3.1±0.5 SE recruits yr−1) provided only a very small fraction of the new colonies required to maintain population sizes. Overall, annual mortality and recruitment rates did not differ significantly among years; however, some species displayed important mortality events and recruitment pulses, indicating variability among species. Based on the growth rates of these 10 species, we projected their longevity and, obtained a mean estimated age of 25–200 years. Finally, the low to moderate turnover rates (mean value 0.80% yr−1) observed among the coralligenous species were in agreement with their low dynamics and persistence. These results offer solid baseline data and reveal that these habitats are among the most vulnerable to the current increases of anthropogenic disturbances

    Exploring the effects of invasive algae on the persistence of gorgonian populations

    No full text
    10 pages, 6 figuresThe effects of invasive species on native fauna are understudied in marine ecosystems, even though the impact of introduced species must be taken into consideration for proper conservation and management. The main aim of this study was to investigate the effects of invasive algae on one of the highest diversity assemblages in the Mediterranean, the coralligenous. Two manipulative experiments were designed to study the effects of overgrowth of invasive species on juvenile colonies of the Mediterranean gorgonian Paramuricea clavata, an important structural species in coralligenous assemblages. The experiments were conducted in two French marine protected areas, Port-Cros National Park and Scandola Regional Park, which are separated by hundreds of km and are invaded by Caulerpa racemosa and Womersleyella setacea, respectively. Both invasive species had a strong and consistently negative effect on different components of fitness. This finding was demonstrated by lower survivorship, higher necrosis rates and lower biomass in P. clavata colonies exposed to invasive algal overgrowth compared to the controls. Because invasive species affected the viability of juvenile colonies of P. clavata, we conclude that the persistence of P. clavata populations affected by invasion can be jeopardized, especially in the case of populations already impacted by mass mortalities associated with climate warmingWe thank O. Bianchimani for his valuable assistance in the field. Financial support was provided by an EU Reintegration grant (ERG-2009-248252) and a BioRocK project from the MICINN (CTM2009-08045). EC and CL were funded by a Juan de la Cierva Postdoctoral Fellowship. We would like to thank all the staff of the Port Cros National Park and the Scandola Regional Park for permissions and facilities to conduct this studyPeer reviewe
    corecore