3,329 research outputs found

    Impact of reionization on CMB polarization tests of slow-roll inflation

    Full text link
    Estimates of inflationary parameters from the CMB B-mode polarization spectrum on the largest scales depend on knowledge of the reionization history, especially at low tensor-to-scalar ratio. Assuming an incorrect reionization history in the analysis of such polarization data can strongly bias the inflationary parameters. One consequence is that the single-field slow-roll consistency relation between the tensor-to-scalar ratio and tensor tilt might be excluded with high significance even if this relation holds in reality. We explain the origin of the bias and present case studies with various tensor amplitudes and noise characteristics. A more model-independent approach can account for uncertainties about reionization, and we show that parametrizing the reionization history by a set of its principal components with respect to E-mode polarization removes the bias in inflationary parameter measurement with little degradation in precision.Comment: 9 pages, 6 figures; submitted to Phys. Rev.

    Knoop Hardness Of Composites Cured With Halogen And Led Lightcuring Units In Class I Restorations

    Get PDF
    Aim: To evaluate the effect of light-curing units (LCUs) on the microhardness of class I composite restorations at different depths. Methods: Two light emitting diodes (LED) (Freelight 2, Radii) and one halogen (Optilux 501) LCUs were evaluated. Thirty class I cavities prepared in human third molars were restored with a microhybrid (Charisma) and a microfilled (Renamel) resin composite. After seven days of water storage, the teeth were decoronated and the crowns were bisected mesiodistally and tested for microhardness under a 25 g load for 20 seconds. Fifteen indentations were performed at three depths for each half-crown. Results: Charisma presented significantly higher Knoop hardness number (KHN) values than Renamel. At the superficial depth, there were no statistically significant differences (p > 0.05) when Charisma was cured with both LED curing units. However, statistically significant difference (p < 0.05) was found when Charisma was light-cured with the halogen LCU. The lowest KHN value was obtained by Renamel light-cured with both LED LCUs, regardless of the composite. Nevertheless, when the microfilled composite was light-cured with the halogen LCU, hardness was significantly higher compared to those cured with LED units at all evaluated depths. Conclusions: The effectiveness of polymerization is related not only to the light-curing source, but also to the type of composite and the curing depth.8130-3

    Simulations for single-dish intensity mapping experiments

    Full text link
    HI intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted HI signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter than the HI emission we wish to detect. We present a simulation of single-dish observations including an instrumental noise model with 1/f and white noise, and sky emission with a diffuse Galactic foreground and HI emission. We consider two foreground cleaning methods: spectral parametric fitting and principal component analysis. For a smooth frequency spectrum of the foreground and instrumental effects, we find that the parametric fitting method provides residuals that are still contaminated by foreground and 1/f noise, but the principal component analysis can remove this contamination down to the thermal noise level. This method is robust for a range of different models of foreground and noise, and so constitutes a promising way to recover the HI signal from the data. However, it induces a leakage of the cosmological signal into the subtracted foreground of around 5%. The efficiency of the component separation methods depends heavily on the smoothness of the frequency spectrum of the foreground and the 1/f noise. We find that as, long as the spectral variations over the band are slow compared to the channel width, the foreground cleaning method still works.Comment: 14 pages, 12 figures. Submitted to MNRA

    Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    Get PDF
    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Then we measure the Zak phase in a photonic quantum walk, by direct observation of the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe, and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general, as it can be applied to all one-dimensional platforms simulating static or Floquet chiral systems.Comment: 10 pages, 7 color figures (incl. appendices) Close to the published versio

    Coronary atherosclerosis as the main endpoint of non-invasive imaging in cardiology: A narrative review

    Get PDF
    The change of paradigm determined by the introduction of cardiac computed tomography (CCT) in the field of cardiovascular medicine has allowed new evidence to emerge. These evidences point towards a major role, probably the most important one in terms of prognostic impact, in the detection, characterization and quantification of atherosclerosis as the main driver and endpoint for the management of coronary artery disease (CAD). Extensive literature has been published in the last decade with large numbers and patients’ populations, investigating several aspects and correlations between atherosclerotic plaque features and risk factors; also, the relationship between plaque features, both with qualitative and quantitative approaches, and cardiovascular events has been investigated. More recent studies have also pointed out the relationship between the knowledge and classification of sub-clinical atherosclerosis and the induced modification of medical therapy (both aggressiveness and compliance) that is most likely able to increase the effect of anti-atherosclerotic drugs, hence significantly improving prognosis. Non-invasive assessment of CAD by means of CCT is becoming the primary tool for management and also the most important parameter for the comprehension of natural history of CAD and how the therapies we adopt are affecting plaque burden as a whole. In this review we will address the modern concepts of CAD driven understanding and management of cardiovascular disease

    HI intensity mapping with FAST

    Full text link
    We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST 1919-beam L-band receivers (1.051.05--1.451.45 GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters (w0,waw_{0},w_{a}) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is 6000deg26000\,{\rm deg}^2. However, observing with larger frequency coverage at higher redshift (0.950.95--1.351.35 GHz) improves the projected errorbars on the HI power spectrum by more than 2 σ2~\sigma confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.Comment: 7 pages, 3 figures, submitted to "Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015" conference proceedin
    corecore