13 research outputs found

    Tool life improvement in cryogenic cooled milling of the preheated Ti-6Al-4V

    No full text
    Cryogenic-based machining has been drawing attention for machining hard metals and super alloys such as the titanium alloys due to environmental concerns and growing regulations over pollution. In this study, cryogenic-assisted milling of Ti-6Al-4V has been performed with the preheated workpiece methods to avoid the cryogenic hardening by liquid nitrogen (LN2). Preliminary experiments show an increase in the cutting force due to cooling of the workpiece; therefore, workpiece preheating was adopted to increase the workpiece temperature. Three cutting speeds and three machining environments (dry, cryogenic, and cryogenic plus preheated) were considered in the analysis of tool wear, cutting forces, tool wear morphology, and chip morphology. Soft (Si coating) and hard (CrTiAlN)-coated tools were used in this study. It was observed that the tool life was increased by 50 to 90 % for Si-coated tools and 50 to 55 % for CrTiAlN-coated tools. The tool wear morphology showed that rubbing and chipping were the primary tool wear mechanisms. It is expected that the present work will be useful for improving tool life and reducing the cost of hard metal products. It may also be useful for reducing the ecological problems by conventional cutting fluids.close0

    High-pressure water-jet-assisted machining of Ti555-3 titanium alloy: investigation of tool wear mechanisms

    Get PDF
    The main objective of this study is to investigate uncoated tungsten carbide tool wear mechanisms for high-pressure waterjet machining of the Ti555-3 titanium alloy. A comparative study has been undertaken (i.e. conventional versus assisted machining) based on numerous experimental tests. These tests have been accompanied by the measurement of the cutting forces and flank wear. It is concluded that the high-pressure water-jet assistance can greatly increase tool life compared to conventional machining, for all cutting conditions. The gain in tool life depends on the severity of the cutting condition. The analyses performed for each test (i.e. SEM, EDS and 3D profilometer) made it possible to monitor the tool wear and to investigate the main wear mechanisms. Based on these analyses, adhesion wear appears to be the most influential mechanism and it is accelerated by an increase in water-jet pressure. Monitoring of the wear profile made it possible to study the evolution of crater wear and material chipping during machining
    corecore