11,452 research outputs found

    Two-dimensional photonic crystal polarizer

    Full text link
    A novel polarizer made from two-dimensional photonic bandgap materials was demonstrated theoretically. This polarizer is fundamentally different from the conventinal ones. It can function in a wide frequency range with high performance and the size can be made very compact, which renders it useful as a micropolarizer in microoptics.Comment: 8 pages, RevTex, 4 figure

    Two-stage clustering in genotype-by-environment analyses with missing data

    Get PDF
    Cluster analysis has been commonly used in genotype-by-environment (G x E) analyses, but current methods are inadequate when the data matrix is incomplete. This paper proposes a new method, referred to as two-stage clustering, which relies on a partitioning of squared Euclidean distance into two independent components, the G x E interaction and the genotype main effect. These components are used in the first and second stages of clustering respectively. Two-stage clustering forms the basis for imputing missing values in the G x E matrix so that a more complete data array is available for other GxE analyses. Imputation for a given genotype uses information from genotypes with similar interaction profiles. This imputation method is shown to improve on an existing nearest cluster method that confounds the G x E interaction and the genotype main effect

    Minimum-action paths for wave-number selection in nonequilibrium systems

    Get PDF
    The problem of wave-number selections in nonequilibrium pattern-forming systems in the presence of noise is investigated. The minimum-action method is proposed to study the noise-induced transitions between the different spatiotemporal states by generalizing the traditional theory previously applied in low-dimensional dynamical systems. The scheme is shown as an example in the stabilized Kuramoto-Sivashinsky equation. The present method allows us to conveniently find the unique noise selected state, in contrast to previous work using direct simulations of the stochastic partial differential equation, where the constraints of the simulation only allow a narrow band to be determined

    Nature and Nurture: a model for soft gamma-ray repeaters

    Get PDF
    During supernova explosions, strange stars with almost bare quark surfaces may be formed. Under certain conditions, these stars could be rapidly spun down by the torque exerted by the fossil disks formed from the fall-back materials. They may also receive large kicks and hence, have large proper motion velocities. When these strange stars pass through the spherical ``Oort'' comet cloud formed during the pre-supernova era, they will capture some small-scale comet clouds and collide with some comet-like objects occasionally. These impacts can account for the repeating bursts as observed from the soft gamma repeaters (SGRs). According to this picture, it is expected that SGR 1900+14 will become active again during 2004-2005.Comment: emulateapj, 5 pages, accepted by ApJ Letter

    Enhancement of surface activity in CO oxidation on Pt(110) through spatiotemporal laser actuation

    Full text link
    We explore the effect of spatiotemporally varying substrate temperature profiles on the dynamics and resulting reaction rate enhancement for the catalytic oxidation of CO on Pt(110). The catalytic surface is "addressed" by a focused laser beam whose motion is computer-controlled. The averaged reaction rate is observed to undergo a characteristic maximum as a function of the speed of this moving laser spot. Experiments as well as modelling are used to explore and rationalize the existence of such an optimal laser speed.Comment: 9 pages, 12 figures, submitted to Phys. Rev.

    D-wave heavy quarkonium production in fixed target experiments

    Get PDF
    We calculate the DD-wave heavy quarkonium production at fixed target experiments under the NRQCD factorization formalism. We find that the color octet contributions are two orders of magnitude larger than color-singlet contributions if color-octet matrix elements are taken according to the NRQCD velocity scaling rules. Within the theoretical uncertainties, the prediction for the production rate of 2−−2^{--} DD-wave charmonium state agrees with the preliminary result of E705 and other experiments. Searching for the 1−−1^{--} DD-wave state ψ(3770)\psi(3770) is further suggested.Comment: 13pages, 4 PS figures, final vertion to appear in PR

    Delayed commutation in quantum computer networks

    Full text link
    In the same way that classical computer networks connect and enhance the capabilities of classical computers, quantum networks can combine the advantages of quantum information and communications. We propose a non-classical network element, a delayed commutation switch, that can solve the problem of switching time in packet switching networks. With the help of some local ancillary qubits and superdense codes we can route the information after part of it has left the network node.Comment: 4 pages. 4 figures. Preliminar versio
    • …
    corecore