9 research outputs found

    Energy Utilization Analysis and Optimization of Corrective Insoles Manufactured by 3D Printing

    Get PDF
    The foot orthotic insole market is forecast to surpass a value of 3.6 billion USD by 2021. This vast industry continues to rely on foam milling and other subtractive methods of manufacturing, which have proven to be wasteful and inefficient. Leaps in digital manufacturing have enabled the technology to enter a plethora of industries, with the promise of increased customization accompanied with reduced waste generation. Despite boasting these valuable traits, the explosive proliferation of 3D printing in conjunction with mounting pressure to incorporate sustainable practices, means that research must be focused on maximizing the material and energy efficiency of the technology. This paper employs a Design of Experiments (DoE) approach for the optimization of two prefabricated insoles, adjusting percentage infill and layer height to obtain data regarding the effects of these parameters on print time, filament usage volume, and energy consumption. Key conclusions formed from the study were that infill density is the dominant factor effecting material consumption and power usage, whereas layer height has the greatest influence on production time. The data presented in this study has the potential to aid not only in the development of mass producible additive manufactured (AM) insoles, but also to advance the understanding of the environmental impact of AM technologies

    THE INFLUENCE OF MISCHANTUS FIBER INSERTION ON THE MECHANICAL PROPERTIES OF COMPOSITE MATERIALS BASED ON STARCH OBTAINED BY THERMOFORMING

    Get PDF
    The thermoplastic starch (TPS) can be used in some applications which do not require high mechanical performance. In order to fulfill their potential utilization as synthetic alternative, the mechanical properties of TPS must be enhanced This paper present the influence of fiber insertion on a composite material based on native thermoplastic starch to improve the theirs mechanical properties

    Obtaining and Characterizing Alginate/k-Carrageenan Hydrogel Cross-Linked with Adipic Dihydrazide

    Get PDF
    The aim of this paper is obtaining and characterizing hydrogels based on different ratios of oxidized alginate (oA) and k-carrageenan (C), chemically cross-linked with adipic dihydrazide (adh). The alginate (A) was first oxidized with sodium metaperiodate in order to transform it into the dialdehyde derivative, a more reactive compound than alginate. A known procedure for oxidation of alginate with sodium metaperiodate in ethanol-water in order to improve alginate reactivity by transforming the hydroxyl end-groups into dialdehyde was used, preceded by a partially cleavage of the alginate chains. In the second stage, the mixture of dialdehydic derivative of oxidized alginate, k-carrageenan and glycerol subjected to reaction with adipic dihydrazide leads to a Semi-Interpenetrated Network covalently cross-linked alginate/k-carrageenan hydrogel (oACadh), based on the dihydrazone compound which is responsible for the chemical cross-linking. Pure alginate, k-carrageenan, oxidized alginate, adipic dihydrazide and the cross-linked hydrogel were characterized by: FTIR, XRD, and SEM

    Role of Mastoid Pneumatization in Temporal Bone Fractures

    Get PDF
    ABSTRACT BACKGROUND AND PURPOSE: The mastoid portion of the temporal bone has multiple functional roles in the organism, including regulation of pressure in the middle ear and protection of the inner ear. We investigated whether mastoid pneumatization plays a role in the protection of vital structures in the temporal bone during direct lateral trauma

    Antimicrobial Properties of Bacterial Cellulose Films Enriched with Bioactive Herbal Extracts Obtained by Microwave-Assisted Extraction

    No full text
    The use of bacterial cellulose (BC) as scaffold for active biofilms is one of the most interesting applications, especially for the biomedical and food industries. However, there are currently few studies evaluating the potential of incorporating herbal extracts into various biomaterials, including BC. Thus, the aim of this study is to report a screening of the total phenolic content and antioxidant and antimicrobial activity of ethanolic extracts of oregano, rosemary, parsley, and lovage. At the same time, the bioactive potential of BC enriched with the four ethanolic extracts is described. Microwave-assisted extraction was used to extract bioactive compounds from the four selected herbs. The physical, mechanical, structural, and chemical properties of BC were also assessed. Next, BC was enriched with the extracts, and their effect against Escherichia coli, Staphylococcus aureus, and Candida albicans was evaluated. The results showed that the bioactivity of the herbs varied significantly, with rosemary extract being the most bioactive. The BC films possessed good mechanical properties, and a three-dimensional network fibrillar structure appropriate for ethanolic-extract incorporation. The BC samples enriched with rosemary extracts had the highest antibacterial activity against S. aureus, while E. coli. and C. albicans seemed to be resistant to all extracts, regardless of herbs
    corecore