10 research outputs found

    Diagnostic guidelines for the histological particle algorithm in the periprosthetic neo-synovial tissue

    Get PDF
    Background The identification of implant wear particles and non-implant related particles and the characterization of the inflammatory responses in the periprosthetic neo-synovial membrane, bone, and the synovial-like interface membrane (SLIM) play an important role for the evaluation of clinical outcome, correlation with radiological and implant retrieval studies, and understanding of the biological pathways contributing to implant failures in joint arthroplasty. The purpose of this study is to present a comprehensive histological particle algorithm (HPA) as a practical guide to particle identification at routine light microscopy examination. Methods The cases used for particle analysis were selected retrospectively from the archives of two institutions and were representative of the implant wear and non-implant related particle spectrum. All particle categories were described according to their size, shape, colour and properties observed at light microscopy, under polarized light, and after histochemical stains when necessary. A unified range of particle size, defined as a measure of length only, is proposed for the wear particles with five classes for polyethylene (PE) particles and four classes for conventional and corrosion metallic particles and ceramic particles. Results All implant wear and non-implant related particles were described and illustrated in detail by category. A particle scoring system for the periprosthetic tissue/SLIM is proposed as follows: 1) Wear particle identification at light microscopy with a two-step analysis at low (× 25, × 40, and × 100) and high magnification (× 200 and × 400); 2) Identification of the predominant wear particle type with size determination; 3) The presence of non-implant related endogenous and/or foreign particles. A guide for a comprehensive pathology report is also provided with sections for macroscopic and microscopic description, and diagnosis. Conclusions The HPA should be considered a standard for the histological analysis of periprosthetic neo-synovial membrane, bone, and SLIM. It provides a basic, standardized tool for the identification of implant wear and non-implant related particles at routine light microscopy examination and aims at reducing intra-observer and inter-observer variability to provide a common platform for multicentric implant retrieval/radiological/histological studies and valuable data for the risk assessment of implant performance for regional and national implant registries and government agencies

    A review of the bio-tribology of medical devices

    No full text

    Evidence based recommendations for reducing head-neck taper connection fretting corrosion in hip replacement prostheses

    No full text
    © 2017 Wichtig Publishing. Introduction: This systematic review seeks to summarise the published studies investigating prosthetic design, manufacture and surgical technique’s effect on fretting corrosion at the head-neck taper connection, and provide clinical recommendations to reduce its occurrence. Methods: PubMed, MEDLINE and EMBASE electronic databases were searched using the terms taper, trunnion, cone and head-neck junction. Articles investigating prosthetic design, manufacture and surgical technique’s effect on fretting corrosion were retrieved, reviewed and graded according to OCEBM levels of evidence and grades of recommendation. Results: The initial search yielded 1,224 unique articles, and 91 were included in the analysis. Conclusions: There is fair evidence to recommend against the use of high offset femoral heads, larger diameter femoral heads, and to pay particular consideration to fretting corrosion’s progression with time and risk with heavier or more active patients. Particular to metal-on-metal hip prostheses, there is fair evidence to recommend positioning the acetabular component to minimise edge loading. Particular to metal-on-polyethylene hip prostheses, there is fair evidence to recommend the use of ceramic femoral heads, against use of cast cobalt alloy femoral heads, and against use of low flexural rigidity femoral stems. Evidence related to taper connection design is largely conflicting or inconclusive. Head-neck taper connection fretting corrosion is a multifactorial problem. Strict adherence to the guidelines presented herein does not eliminate the risk. Prosthesis selection is critical, and well-controlled studies to identify each design parameter’s relative contribution to head-neck taper connection fretting corrosion are required
    corecore