120 research outputs found

    Generation of Arbitrary Frequency Chirps with a Fiber-Based Phase Modulator and Self-Injection-Locked Diode Laser

    Get PDF
    We present a novel technique for producing pulses of laser light whose frequency is arbitrarily chirped. The output from a diode laser is sent through a fiber-optical delay line containing a fiber-based electro-optical phase modulator. Upon emerging from the fiber, the phase-modulated pulse is used to injection-lock the laser and the process is repeated. Large phase modulations are realized by multiple passes through the loop while the high optical power is maintained by self-injection-locking after each pass. Arbitrary chirps are produced by driving the modulator with an arbitrary waveform generator

    Superparamagnetic Liposomes for MRI Monitoring and External Magnetic Field-Induced Selective Targeting of Malignant Brain Tumors

    Get PDF
    Magnetic-fluid-loadedliposomes (MFLs) of optimized magnetic responsiveness are newly worked out from the entrapment of superparamagnetic maghemite nanocrystals in submicronic PEG-ylated rhodamine-labelled phospholipid vesicles. This nanoplatform provides an efficient tool for the selective magnetic targeting of malignant tumors localized in brain and non-invasive traceability by MRI through intravascular administration. As assessed by in vivo 7-T MRI and ex vivo electron spin resonance, 4-h exposure to 190-T m–1magnetic field gradient efficiently concentrates MFLs into human U87 glioblastoma implanted in the striatum of mice. The magnetoliposomes are then longer retained therein as checked by MRI monitoring over a 24-h period. Histological analysis by confocal fluorescence microscopy confirms the significantly boosted accumulation of MFLs in the malignant tissue up to the intracellular level. Electron transmission microscopy reveals effective internalization by endothelial and glioblastoma cells of the magnetically conveyed MFLs as preserved vesicle structures. The magnetic field gradient emphasizes MFL distribution solely in the tumors according to the enhanced permeability and retention (EPR) effect while comparatively very low amounts are recovered in the other cerebral areas. Such a selective targeting precisely traceable by MRI is promising for therapeutic applications since the healthy brain tissue can be expected to be spared during treatments by deleterious anticancer drugs carried by magnetically guided MFLs

    Parallelized Manipulation of Adherent Living Cells by Magnetic Nanoparticles-Mediated Forces

    Get PDF
    The remote actuation of cellular processes such as migration or neuronal outgrowth is a challenge for future therapeutic applications in regenerative medicine. Among the different methods that have been proposed, the use of magnetic nanoparticles appears to be promising, since magnetic fields can act at a distance without interactions with the surrounding biological system. To control biological processes at a subcellular spatial resolution, magnetic nanoparticles can be used either to induce biochemical reactions locally or to apply forces on different elements of the cell. Here, we show that cell migration and neurite outgrowth can be directed by the forces produced by a switchable parallelized array of micro-magnetic pillars, following the passive uptake of nanoparticles. Using live cell imaging, we first demonstrate that adherent cell migration can be biased toward magnetic pillars and that cells can be reversibly trapped onto these pillars. Second, using differentiated neuronal cells we were able to induce events of neurite outgrowth in the direction of the pillars without impending cell viability. Our results show that the range of forces applied needs to be adapted precisely to the cellular process under consideration. We propose that cellular actuation is the result of the force on the plasma membrane caused by magnetically filled endo-compartments, which exert a pulling force on the cell periphery

    Directional control of neurite outgrowth: emerging technologies for Parkinson's disease using magnetic nanoparticles and magnetic field gradients.

    Get PDF
    A challenge in current stem cell therapies for Parkinson's disease (PD) is controlling neuronal outgrowth from the substantia nigra towards the targeted area where connectivity is required in the striatum. Here we present progress towards controlling directional neurite extensions through the application of iron-oxide magnetic nanoparticles (MNPs) labelled neuronal cells combined with a magnetic array generating large spatially variant field gradients (greater than 20 T m-1). We investigated the viability of this approach in both two-dimensional and organotypic brain slice models and validated the observed changes in neurite directionality using mathematical models. Results showed that MNP-labelled cells exhibited a shift in directional neurite outgrowth when cultured in a magnetic field gradient, which broadly agreed with mathematical modelling of the magnetic force gradients and predicted MNP force direction. We translated our approach to an ex vivo rat brain slice where we observed directional neurite outgrowth of transplanted MNP-labelled cells from the substantia nigra towards the striatum. The improved directionality highlights the viability of this approach as a remote-control methodology for the control and manipulation of cellular growth for regenerative medicine applications. This study presents a new tool to overcome challenges faced in the development of new therapies for PD

    Tools and data services registry: a community effort to document bioinformatics resources.

    Get PDF
    Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools
    corecore