101 research outputs found
Design of Multi-Antenna System for UMTS Clamshell Mobile Phones with Ground Plane Effects Considerations
In this paper, the influence of the ground plane dimensions on the port-to-port isolation of two closely-spaced Universal Mobile Telecommunications System (UMTS) Planar Inverted-F Antennas (PIFAs) with and without neutralization line is first presented. Parametric studies show the existence of an optimal size of the ground plane allowing optimizing the isolation and the efficiency of the considered antenna-system. The results obtained with this study are used in the second part to develop an efficient neutralized multi-antenna system for clamshell-type mobile phones. The obtained results, in terms of isolation, matching and diversity for the two possible configurations of the clamshell system in use namely the open and the closed states, show that good performance are obtained in the open state and preserved in the closed state. Prototypes of these two configurations are realized and measurement results are in good agreement with the simulations
Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation
In this paper, we study the influence of the radius of a cylindrical
supporting structure on radiation properties of a conformal millimeter-wave
antenna array. Bent antenna array structures on cylindrical surfaces may have
important applications in future mobile devices. Small radii may be needed if
the antenna is printed on the edges of mobile devices and in items which human
beings are wearing, such as wrist watches, bracelets and rings. The antenna
under study consists of four linear series-fed arrays of four patch elements
and is operating at 58.8 GHz with linear polarization. The antenna array is
fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due
to its good plasticity properties and low losses. Results for both planar and
conformal antenna arrays show rather good agreement between simulation and
measurements. The results show that conformal antenna structures allow
achieving large angular coverage and may allow beam-steering implementations if
switches are used to select between different arrays around a cylindrical
supporting structure.Comment: Keywords: conformal antenna, millimeter-wave communications, patch
antenna array. 11 pages, 10 figures, 1 tabl
Two-Element PIFA Array Structure for Polarization Diversity in UMTS Mobile Phones
In this paper, we demonstrate the possibility to strongly modify the radiated fields of a UMTS handset by using a phased two-element PIFA array. The structure is composed of a 100x40 mm2 metallic ground plane acting as the Printed Circuit Board (PCB) of the mobile phone. Two UMTS PIFAs are located at the top edge of this PCB. They are fed by a double Quasi-Lumped Coupler able to provide a 360° phase difference between its two outputs. By properly choosing the DC bias of the double QuasiLumped Coupler, we can set a specific phase difference between the two PIFAs. In this way the two-element array is able to radiate different electromagnetic fields. Simulated and measured radiation patterns in the two main planes of the chassis are presented for different phase differences. It is especially revealed that the novel twoantenna structure is able to radiate vertically-polarized electric fields in the azimuthal plane of the phone and horizontally-polarized electric fields in the same plane when changing the phase shift between the antennas from 0° to 180°. Potential applications are polarization-diversity techniques and Specific Absorption Rate reduction for handsets
Diversity Characterization of Optimized Two-Antenna Systems for UMTS Handsets
This paper presents the evaluation of the diversity performance of several two-antenna systems for UMTS terminals. All the measurements are done in a reverberation chamber and in a Wheeler cap setup. First, a two-antenna system having poor isolation between its radiators is measured. Then, the performance of this structure is compared with two optimized structures having high isolation and high total efficiency, thanks to the implementation of a neutralization technique between the radiating elements. The key diversity parameters of all these systems are discussed, that is, the total efficiency of the antenna, the envelope correlation coefficient, the diversity gains, the mean effective gain (MEG), and the MEG ratio. The comparison of all these results is especially showing the benefit brought back by the neutralization technique
Three-dimensional printed ABS plastic peanut-lens with integrated ball grid array module for high-data-rate communications in F-band
A ball grid array (BGA) module integrated within a three-dimensional printed peanut-shaped lens is proposed for high-data-rate wireless communications in the F-band (116–140 GHz) between a video camera and a TV or a laptop. The module implements a 1?×?2 array antenna which radiates a wide beam in the horizontal plane (H-plane) and a narrower beam in the vertical plane (E-plane). The dielectric lens, fabricated in ABS-M30 plastic, is a shaped lens designed to achieve a fan-beam radiation pattern further narrowing the vertical plane and widening the horizontal plane of the BGA module. The realised gain of the full antenna system is required to exceed 5?dBi within a 120° angular interval in the horizontal plane and a 20° angular interval in the vertical plane. Measurements show a reflection coefficient below ?9?dB from 116 to 140?GHz and a maximum realised gain of 8.5?dBi at 130?GHz demonstrating feasibility of the cost-effective proposed design for a high-data-rate communications.info:eu-repo/semantics/acceptedVersio
Transmit array as a viable 3D printing option for backhaul applications at V-band
Two designs of high gain dielectric lens for a Vband backhaul antenna, compatible with 3D printing, are compared. The available printing materials still have significant losses, which limit the performance of traditional focusing dielectric lenses, as the dome elliptical lens. Herein, we show that an all-dielectric transmit array can present several mechanical and electrical advantages, especially when high gains are required. We demonstrate that even with a compact transmit array (f/d = 067 it is still possible to comply with the usual bandwidth (57-66 GHz) and gain (>30 dBi) requirements for backhaul applications.info:eu-repo/semantics/acceptedVersio
THz packaging solution for low cost si-based 40 Gb/s wireless link system
This paper presents an innovative low-cost transmitter solution aimed at improving telecommunication networks capacities in order to support the massive data traffic growth. Sub-THz frequencies > 200 GHz are considered to target at least 40 Gb/s. The proposed transmitter consists of a Silicon Photonic integrated sub-THz source and an industrial antenna integrated in HDI organic packaging substrate. As these components were experimentally evaluated, a real-time error free wireless data transmission of 10 Gb/s was successfully achieved and an antenna gain of 5.5 dBi was measured in the broadside direction from 220 GHz to 240 GHz (8.7% relative bandwidth). With the addition of a low-cost dielectric lens, a gain of 17 dBi was reached.info:eu-repo/semantics/acceptedVersio
Antenna Solutions for 4G Smartphones in Laser Direct Structuring Technology
Two antenna designs operating in the LTE/4G cellular frequency bands are proposed in this paper. Both designs consist of a driven strip which capacitively excites a parasitic grounded strip for a better matching response around 700 MHz. The antennas are realized using Laser Direct Structuring (LDS) technology on POCAN plastic material with a height of 5 mm above the system Printed Circuit Board. Passive matching circuits are necessary at each antenna’s feed, to match the input impedance to 50 Ohm at the desired operating bands (700-960 MHz and 1.7-2.2 GHz for the first design and 700-960 MHz and 1.7-2.7 GHz for the second). The simulation results are validated through s-parameter and total efficiency measurements. To form a basis for future studies, the effect of the hand and the head of the user are investigated upon the antenna performance
A compact 130GHz fully packaged point-to-point wireless system with 3D-printed 26dBi lens antenna achieving 12.5Gb/s at 1.55pJ/b/m
Low-cost, energy efficient, high-capacity, scalable, and easy-to-deploy point-to-point wireless links at mm-waves find a variety of applications including data intensive systems (e.g., data centers), interactive kiosks, and many emerging applications requiring data pipelines. Operating above 100GHz enables compact low-footprint system solutions that can multiplex Tb/s aggregate rates for dense deployments; therefore competing with wired solution in many aspects including rate and efficiency, but much more flexible for deployment. The focus is on small-footprint fully integrated solutions, which overcome traditional packaging challenges imposed at >100GHz with commercial and low-cost solutions.info:eu-repo/semantics/acceptedVersio
Ball grid array-module with integrated shaped lens for WiGig applications in eyewear devices
A ball grid array-module (BGA-module) incorporating a low-cost shaped dielectric lens is proposed for wireless communications in the 60-GHz WiGig band between a smart eye-wear, where it is integrated and facing a laptop or TV. The module, which is codesigned with a 60-GHz transceiver, consists of two separate identical antennas for transmitting (Tx) and receiving (Rx). The in-plane separation of these elements is 6.9 mm both being offset from the lens focus. This poses a challenge to the lens design to ensure coincident beam pointing directions for Rx and Tx. The shaped lens is further required to narrow the angular coverage in the elevation plane and broaden it in the horizontal plane. A 3-D-printed eyewear frame with an integrated lens and a recess for proper BGA-module integration is fabricated in ABS-plastic material. Measurements show a reflection coefficient below -12 dB in the 57-66 GHz band. A maximum gain of 11 dBi is obtained at 60 GHz, with 24 degrees and 96 degrees beamwidth at 5-dBi gain, respectively, in the vertical and horizontal planes. The radiation exposure is evaluated for a homogeneous SAM head phantom and a heterogeneous visible human head. The simulated power density values for both models are found to be lower than the existing standards
- …