314 research outputs found

    Three-dimensional electronic instabilities in polymerized solid A1C60

    Full text link
    The low-temperature structure of A1C60 (A=K, Rb) is an ordered array of polymerized C60 chains, with magnetic properties that suggest a non-metallic ground state. We study the paramagnetic state of this phase using first-principles electronic-structure methods, and examine the magnetic fluctuations around this state using a model Hamiltonian. The electronic and magnetic properties of even this polymerized phase remain strongly three dimensional, and the magnetic fluctuations favor an unusual three-dimensional antiferromagnetically ordered structure with a semi-metallic electronic spectrum.Comment: REVTeX 3.0, 10 pages, 4 figures available on request from [email protected]

    Electronic Structure of Superconducting Ba6c60

    Full text link
    We report the results of first-principles electronic-structure calculations for superconducting Ba6C60. Unlike the A3C60 superconductors, this new compound shows strong Ba-C hybridization in the valence and conduction regions, mixed covalent/ionic bonding character, partial charge transfer, and insulating zero-gap band structure.Comment: 11 pages + 4 figures (1 appended, others on request), LaTeX with REVTE

    Insulating and Conducting Phases of RbC60

    Full text link
    Optical measurements were performed on thin films of Rbx_{x}C60_{60}, identified by X-ray diffraction as mostly x=1x=1 material. The samples were subjected to various heat treatments, including quenching and slow cooling from 400K. The dramatic increase in the transmission of the quenched samples, and the relaxation towards the transmission observed in slow cooled samples provides direct evidence for the existence of a metastable insulating phase. Slow cooling results in a phase transition between two electrically conducting phases.Comment: Minor revisions. Submitted to PRB, RevTeX 3.0 file, 2 postscript figures included, ir_dop

    Crystal Structures and Electronic Properties of Haloform-Intercalated C60

    Full text link
    Using density functional methods we calculated structural and electronic properties of bulk chloroform and bromoform intercalated C60, C60 2CHX3 (X=Cl,Br). Both compounds are narrow band insulator materials with a gap between valence and conduction bands larger than 1 eV. The calculated widths of the valence and conduction bands are 0.4-0.6 eV and 0.3-0.4 eV, respectively. The orbitals of the haloform molecules overlap with the π\pi orbitals of the fullerene molecules and the p-type orbitals of halogen atoms significantly contribute to the valence and conduction bands of C60 2CHX3. Charging with electrons and holes turns the systems to metals. Contrary to expectation, 10 to 20 % of the charge is on the haloform molecules and is thus not completely localized on the fullerene molecules. Calculations on different crystal structures of C60 2CHCl3 and C60 2CHBr3 revealed that the density of states at the Fermi energy are sensitive to the orientation of the haloform and C60 molecules. At a charging of three holes, which corresponds to the superconducting phase of pure C60 and C60 2CHX3, the calculated density of states (DOS) at the Fermi energy increases in the sequence DOS(C60) < DOS(C60 2CHCl3) < DOS(C60 2CHBr3).Comment: 11 pages, 7 figures, 4 table

    Frenkel and charge transfer excitons in C60

    Full text link
    We have studied the low energy electronic excitations of C60 using momentum dependent electron energy-loss spectroscopy in transmission. The momentum dependent intensity of the gap excitation allows the first direct experimental determination of the energy of the 1Hg excitation and thus also of the total width of the multiplet resulting from the gap transition. In addition, we could elucidate the nature of the following excitations - as either Frenkel or charge transfer excitons.Comment: RevTEX, 3 Figures, to appear in Phys. Rev.

    Auger transition from orbitally degenerate systems: Effects of screening and multielectron excitations

    Get PDF
    We calculate Auger spectra given by the two-hole Green's function from orbitally degenerate Hubbard-like models as a function of correlation strength and band filling. The resulting spectra are qualitatively different from those obtained from fully-filled singly degenerate models due to the presence of screening dynamics and multielectron excitations. Application to a real system shows remarkable agreement with experimental results leading to reinterpretation of spectral features.Comment: To appear in Phy. Rev. Let

    Screening, Coulomb pseudopotential, and superconductivity in alkali-doped Fullerenes

    Full text link
    We study the static screening in a Hubbard-like model using quantum Monte Carlo. We find that the random phase approximation is surprisingly accurate almost up to the Mott transition. We argue that in alkali-doped Fullerenes the Coulomb pseudopotential μ\mu^\ast is not very much reduced by retardation effects. Therefore efficient screening is important in reducing μ\mu^{\ast} sufficiently to allow for an electron-phonon driven superconductivity. In this way the Fullerides differ from the conventional picture, where retardation effects play a major role in reducing the electron-electron repulsion.Comment: 4 pages RevTeX with 2 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Optimal margin and edge-enhanced intensity maps in the presence of motion and uncertainty

    Get PDF
    In radiation therapy, intensity maps involving margins have long been used to counteract the effects of dose blurring arising from motion. More recently, intensity maps with increased intensity near the edge of the tumour (edge enhancements) have been studied to evaluate their ability to offset similar effects that affect tumour coverage. In this paper, we present a mathematical methodology to derive margin and edge-enhanced intensity maps that aim to provide tumour coverage while delivering minimum total dose. We show that if the tumour is at most about twice as large as the standard deviation of the blurring distribution, the optimal intensity map is a pure scaling increase of the static intensity map without any margins or edge enhancements. Otherwise, if the tumour size is roughly twice (or more) the standard deviation of motion, then margins and edge enhancements are preferred, and we present formulae to calculate the exact dimensions of these intensity maps. Furthermore, we extend our analysis to include scenarios where the parameters of the motion distribution are not known with certainty, but rather can take any value in some range. In these cases, we derive a similar threshold to determine the structure of an optimal margin intensity map.National Cancer Institute (U.S.) (grant R01-CA103904)National Cancer Institute (U.S.) (grant R01-CA118200)Natural Sciences and Engineering Research Council of Canada (NSERC)Siemens AktiengesellschaftMassachusetts Institute of Technology. Hugh Hampton Young Memorial Fund fellowshi
    corecore