34 research outputs found

    Design and Implementation of Degenerate Microsatellite Primers for the Mammalian Clade

    Get PDF
    Microsatellites are popular genetic markers in molecular ecology, genetic mapping and forensics. Unfortunately, despite recent advances, the isolation of de novo polymorphic microsatellite loci often requires expensive and intensive groundwork. Primers developed for a focal species are commonly tested in a related, non-focal species of interest for the amplification of orthologous polymorphic loci; when successful, this approach significantly reduces cost and time of microsatellite development. However, transferability of polymorphic microsatellite loci decreases rapidly with increasing evolutionary distance, and this approach has shown its limits. Whole genome sequences represent an under-exploited resource to develop cross-species primers for microsatellites. Here we describe a three-step method that combines a novel in silico pipeline that we use to (1) identify conserved microsatellite loci from a multiple genome alignments, (2) design degenerate primer pairs, with (3) a simple PCR protocol used to implement these primers across species. Using this approach we developed a set of primers for the mammalian clade. We found 126,306 human microsatellites conserved in mammalian aligned sequences, and isolated 5,596 loci using criteria based on wide conservation. From a random subset of ∼1000 dinucleotide repeats, we designed degenerate primer pairs for 19 loci, of which five produced polymorphic fragments in up to 18 mammalian species, including the distinctly related marsupials and monotremes, groups that diverged from other mammals 120–160 million years ago. Using our method, many more cross-clade microsatellite loci can be harvested from the currently available genomic data, and this ability is set to improve exponentially as further genomes are sequenced

    Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sesame is an important oil crop, but limited transcriptomic and genomic data are currently available. This information is essential to clarify the fatty acid and lignan biosynthesis molecular mechanism. In addition, a shortage of sesame molecular markers limits the efficiency and accuracy of genetic breeding. High-throughput transcriptomic sequencing is essential to generate a large transcriptome sequence dataset for gene discovery and molecular marker development.</p> <p>Results</p> <p>Sesame transcriptomes from five tissues were sequenced using Illumina paired-end sequencing technology. The cleaned raw reads were assembled into a total of 86,222 unigenes with an average length of 629 bp. Of the unigenes, 46,584 (54.03%) had significant similarity with proteins in the NCBI nonredundant protein database and Swiss-Prot database (E-value < 10<sup>-5</sup>). Of these annotated unigenes, 10,805 and 27,588 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. In total, 22,003 (25.52%) unigenes were mapped onto 119 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Furthermore, 44,750 unigenes showed homology to 15,460 <it>Arabidopsis </it>genes based on BLASTx analysis against The Arabidopsis Information Resource (TAIR, Version 10) and revealed relatively high gene coverage. In total, 7,702 unigenes were converted into SSR markers (EST-SSR). Dinucleotide SSRs were the dominant repeat motif (67.07%, 5,166), followed by trinucleotide (24.89%, 1,917), tetranucleotide (4.31%, 332), hexanucleotide (2.62%, 202), and pentanucleotide (1.10%, 85) SSRs. AG/CT (46.29%) was the dominant repeat motif, followed by AC/GT (16.07%), AT/AT (10.53%), AAG/CTT (6.23%), and AGG/CCT (3.39%). Fifty EST-SSRs were randomly selected to validate amplification and to determine the degree of polymorphism in the genomic DNA pools. Forty primer pairs successfully amplified DNA fragments and detected significant amounts of polymorphism among 24 sesame accessions.</p> <p>Conclusions</p> <p>This study demonstrates that Illumina paired-end sequencing is a fast and cost-effective approach to gene discovery and molecular marker development in non-model organisms. Our results provide a comprehensive sequence resource for sesame research.</p

    Breeding without Breeding: Is a Complete Pedigree Necessary for Efficient Breeding?

    Get PDF
    Complete pedigree information is a prerequisite for modern breeding and the ranking of parents and offspring for selection and deployment decisions. DNA fingerprinting and pedigree reconstruction can substitute for artificial matings, by allowing parentage delineation of naturally produced offspring. Here, we report on the efficacy of a breeding concept called “Breeding without Breeding” (BwB) that circumvents artificial matings, focusing instead on a subset of randomly sampled, maternally known but paternally unknown offspring to delineate their paternal parentage. We then generate the information needed to rank those offspring and their paternal parents, using a combination of complete (full-sib: FS) and incomplete (half-sib: HS) analyses of the constructed pedigrees. Using a random sample of wind-pollinated offspring from 15 females (seed donors), growing in a 41-parent western larch population, BwB is evaluated and compared to two commonly used testing methods that rely on either incomplete (maternal half-sib, open-pollinated: OP) or complete (FS) pedigree designs. BwB produced results superior to those from the incomplete design and virtually identical to those from the complete pedigree methods. The combined use of complete and incomplete pedigree information permitted evaluating all parents, both maternal and paternal, as well as all offspring, a result that could not have been accomplished with either the OP or FS methods alone. We also discuss the optimum experimental setting, in terms of the proportion of fingerprinted offspring, the size of the assembled maternal and paternal half-sib families, the role of external gene flow, and selfing, as well as the number of parents that could be realistically tested with BwB

    Transmission ratio distortion in the human body louse, Pediculus humanus (Insecta : Phthiraptera)

    No full text
    We studied inheritance at three microsatellite loci in eight F-1 and two F-2 families of the body (clothes) louse of humans, Pediculus humanus. The alleles of heterozygous female-parents were always inherited in a Mendelian fashion in these families. Alleles from heterozygous male-parents, however, were inherited in two different ways: (i) in a Mendelian fashion and (ii) in a non-Mendelian fashion, where males passed to their offspring only one of their two alleles, that is, 100% nonrandom transmission. In male body lice, where there was non-Mendelian inheritance, the paternally inherited set of alleles was eliminated. We interpret this pattern of inheritance as evidence for extreme transmission ratio distortion of paternal alleles in this species

    Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population

    No full text
    \bulletThe mating pattern and gene flow in a western larch (Larix occidentalis Nutt.) experimental population was studied with the aid of microsatellite markers and a combination of paternity-mating system analysis. The commonly difficult to assess, male gametic contribution was determined with 95% confidence and its impact on genetic gain and diversity was determined. \bullet Male fertility success rate ranged between 0 and 11%. Male reproductive output parental imbalance was observed with 50% of the pollen being produced by the top 5% of males while the lower 39% males only produced 10% of the pollen. \bullet A significant difference was observed between male effective population size (genetic diversity) estimates from paternity assignment compared to those based on population's census number (21 vs. 41); however, this difference did not affect estimates of genetic gain. \bullet A total of 221 full-fib families were identified (sample size range: 1–8) and were nested among the studied 14 seed-donors. \bullet A combination of paternity-mating system analysis is recommended to provide a better insight into seed orchards' mating dynamics. While pollen flow tends to inflate mating system's outcrossing rate, the paternity analysis effectively determined the rate and magnitude of contamination across receptive females.Analyse de paternité et du mode de croisement dans une population expérimentale de mélèze occidental (Larix occidentalis Nutt.). \bullet Les modes de croisement et les flux de gènes dans une population expérimentale de mélèze occidental (Larix occidentalis Nutt.) ont été étudiés à l'aide de marqueurs microsatellites et d'une analyse combinée de paternité et du système de reproduction. La contribution gamétique mâle – communément difficile à estimer – a été déterminée avec un seuil de confiance de 95 % et son impact sur le gain génétique et la diversité a été déterminé. \bullet Le taux de succès reproductif mâle était compris entre 0 et 11 %. Un déséquilibre dans la contribution des parents mâles a été observé avec la production de 50 % du pollen par 5 % des pères alors que 39 % d'entre eux ne contribuaient que pour seulement 10 % du pollen. \bullet Une différence significative a été observée entre la taille efficace de la population mâle (diversité génétique) estimée par la recherche de paternité et celle basée sur les effectifs recensés de la population (21 vs. 41) ; cependant, cette différence n'affecte pas l'estimation du gain génétique. \bullet 221 familles de plein-frères ont été identifiées (effectifs entre 1 et 8), regroupées parmi les 14 arbres-mères étudiés. \bullet La combinaison d'une analyse de paternité et du système de reproduction est recommandée pour étudier de manière approfondie la dynamique de croisement en vergers à graines. Tandis que les flux de pollen tendent à augmenter le taux d'inter-croisements, l'analyse de paternité détermine de manière effective le taux et l'amplitude de contamination des arbres-mères
    corecore