524 research outputs found

    The Ising M-p-spin mean-field model for the structural glass: continuous vs. discontinuous transition

    Full text link
    The critical behavior of a family of fully connected mean-field models with quenched disorder, the M−pM-p Ising spin glass, is analyzed, displaying a crossover between a continuous and a random first order phase transition as a control parameter is tuned. Due to its microscopic properties the model is straightforwardly extendable to finite dimensions in any geometry.Comment: 10 pages, 1 figure, 1 tabl

    Phase diagram and complexity of mode-locked lasers: from order to disorder

    Full text link
    We investigate mode-locking processes in lasers displaying a variable degree of structural randomness, from standard optical cavities to multiple-scattering media. By employing methods mutuated from spin-glass theory, we analyze the mean-field Hamiltonian and derive a phase-diagram in terms of the pumping rate and the degree of disorder. Three phases are found: i) paramagnetic, corresponding to a noisy continuous wave emission, ii) ferromagnetic, that describes the standard passive mode-locking, and iii) the spin-glass in which the phases of the electromagnetic field are frozen in a exponentially large number of configurations. The way the mode-locking threshold is affected by the amount of disorder is quantified. The results are also relevant for other physical systems displaying a random Hamiltonian, like Bose-Einstein condensates and nonlinear optical beams.Comment: 4 pages, 2 figure

    On Equilibrium Dynamics of Spin-Glass Systems

    Full text link
    We present a critical analysis of the Sompolinsky theory of equilibrium dynamics. By using the spherical 2+p2+p spin glass model we test the asymptotic static limit of the Sompolinsky solution showing that it fails to yield a thermodynamically stable solution. We then present an alternative formulation, based on the Crisanti, H\"orner and Sommers [Z. f\"ur Physik {\bf 92}, 257 (1993)] dynamical solution of the spherical pp-spin spin glass model, reproducing a stable static limit that coincides, in the case of a one step Replica Symmetry Breaking Ansatz, with the solution at the dynamic free energy threshold at which the relaxing system gets stuck off-equilibrium. We formally extend our analysis to any number of Replica Symmetry Breakings RR. In the limit R→∞R\to\infty both formulations lead to the Parisi anti-parabolic differential equation. This is the special case, though, where no dynamic blocking threshold occurs. The new formulation does not contain the additional order parameter Δ\Delta of the Sompolinsky theory.Comment: 24 pages, 6 figure

    Experimental evidence of replica symmetry breaking in random lasers

    Full text link
    Spin-glass theory is one of the leading paradigms of complex physics and describes condensed matter, neural networks and biological systems, ultracold atoms, random photonics, and many other research fields. According to this theory, identical systems under identical conditions may reach different states and provide different values for observable quantities. This effect is known as Replica Symmetry Breaking and is revealed by the shape of the probability distribution function of an order parameter named the Parisi overlap. However, a direct experimental evidence in any field of research is still missing. Here we investigate pulse-to-pulse fluctuations in random lasers, we introduce and measure the analogue of the Parisi overlap in independent experimental realizations of the same disordered sample, and we find that the distribution function yields evidence of a transition to a glassy light phase compatible with a replica symmetry breaking.Comment: 10 pages, 5 figure

    Non-equilibrium and information: the role of cross-correlations

    Full text link
    We discuss the relevance of information contained in cross-correlations among different degrees of freedom, which is crucial in non-equilibrium systems. In particular we consider a stochastic system where two degrees of freedom X1X_1 and X2X_2 - in contact with two different thermostats - are coupled together. The production of entropy and the violation of equilibrium fluctuation-dissipation theorem (FDT) are both related to the cross-correlation between X1X_1 and X2X_2. Information about such cross-correlation may be lost when single-variable reduced models, for X1X_1, are considered. Two different procedures are typically applied: (a) one totally ignores the coupling with X2X_2; (b) one models the effect of X2X_2 as an average memory effect, obtaining a generalized Langevin equation. In case (a) discrepancies between the system and the model appear both in entropy production and linear response; the latter can be exploited to define effective temperatures, but those are meaningful only when time-scales are well separated. In case (b) linear response of the model well reproduces that of the system; however the loss of information is reflected in a loss of entropy production. When only linear forces are present, such a reduction is dramatic and makes the average entropy production vanish, posing problems in interpreting FDT violations.Comment: 30 pages, 4 figures, 4 appendixe

    Genetic neonatal-onset epilepsies and developmental/epileptic encephalopathies with movement disorders: A systematic review

    Get PDF
    Despite expanding next generation sequencing technologies and increasing clinical in-terest into complex neurologic phenotypes associating epilepsies and developmental/epileptic encephalopathies (DE/EE) with movement disorders (MD), these monogenic conditions have been less extensively investigated in the neonatal period compared to infancy. We reviewed the medical literature in the study period 2000–2020 to report on monogenic conditions characterized by neonatal onset epilepsy and/or DE/EE and development of an MD, and described their electroclinical, genetic and neuroimaging spectra. In accordance with a PRISMA statement, we created a data collection sheet and a protocol specifying inclusion and exclusion criteria. A total of 28 different genes (from 49 papers) leading to neonatal-onset DE/EE with multiple seizure types, mainly featuring tonic and myoclonic, but also focal motor seizures and a hyperkinetic MD in 89% of conditions, with neonatal onset in 22%, were identified. Neonatal seizure semiology, or MD age of onset, were not always available. The rate of hypokinetic MD was low, and was described from the neonatal period only, with WW domain containing oxidoreductase (WWOX) pathogenic variants. The outcome is characterized by high rates of associated neurodevelopmental disorders and microcephaly. Brain MRI findings are either normal or nonspecific in most conditions, but serial imaging can be necessary in order to detect progressive abnormalities. We found high genetic heterogeneity and low numbers of described patients. Neurological phenotypes are complex, reflecting the involvement of genes necessary for early brain development. Future studies should focus on accurate neonatal epileptic phenotyping, and detailed description of semiology and time-course, of the associated MD, especially for the rarest conditions

    Approaches, Strategies and Theoretical and Practice-Based Research Methods to investigate and archive video art:Some reflections from the REWIND projects

    Get PDF
    This paper will discuss methodologies, approaches and issues, emerging out of three major research projects that have investigated early histories of video art in Europe: REWIND (2004 ongoing), REWINDItalia (2011-2014) and EWVA (2015-2018). The paper will discuss how the projects have engaged with the history of the apparatus, the identity and status of the artworks, preservation methods, and the legacy of these video artworks today. A particular focus will be on semi-structured questionnaires for interviews structured to capture oral histories, memories and recollections, that in some cases would have been otherwise lost to future knowledge and the uncovering of lost artworks and their available documentation. The speakers directly involved in the projects - will discuss solutions, risks and experiences encountered in the projects and future research perspectives for re-covering, collecting, archiving and narrating the histories of early video art in Europe. The paper will discuss also different practice-based research methods, platforms and engagement strategies, including re-installation and re-enactment

    Solving the spherical p -spin model with the cavity method: Equivalence with the replica results

    Get PDF
    The spherical p-spin is a fundamental model for glassy physics, thanks to its analytical solution achievable via the replica method. Unfortunately, the replica method has some drawbacks: it is very hard to apply to diluted models and the assumptions beyond it are not immediately clear. Both drawbacks can be overcome by the use of the cavity method; however, this needs to be applied with care to spherical models. Here, we show how to write the cavity equations for spherical p-spin models, both in the replica symmetric (RS) ansatz (corresponding to belief propagation) and in the one-step replica-symmetry-breaking (1RSB) ansatz (corresponding to survey propagation). The cavity equations can be solved by a Gaussian RS and multivariate Gaussian 1RSB ansatz for the distribution of the cavity fields. We compute the free energy in both ansatzes and check that the results are identical to the replica computation, predicting a phase transition to a 1RSB phase at low temperatures. The advantages of solving the model with the cavity method are many. The physical meaning of the ansatz for the cavity marginals is very clear. The cavity method works directly with the distribution of local quantities, which allows us to generalize the method to diluted graphs. What we are presenting here is the first step towards the solution of the diluted version of the spherical p-spin model, which is a fundamental model in the theory of random lasers and interesting per se as an easier-to-simulate version of the classical fully connected p-spin model

    The spherical 2+p spin glass model: an analytically solvable model with a glass-to-glass transition

    Full text link
    We present the detailed analysis of the spherical s+p spin glass model with two competing interactions: among p spins and among s spins. The most interesting case is the 2+p model with p > 3 for which a very rich phase diagram occurs, including, next to the paramagnetic and the glassy phase represented by the one step replica symmetry breaking ansatz typical of the spherical p-spin model, other two amorphous phases. Transitions between two contiguous phases can also be of different kind. The model can thus serve as mean-field representation of amorphous-amorphous transitions (or transitions between undercooled liquids of different structure). The model is analytically solvable everywhere in the phase space, even in the limit where the infinite replica symmetry breaking ansatz is required to yield a thermodynamically stable phase.Comment: 21 pages, 18 figure

    The spherical 2+p2+p spin glass model: an exactly solvable model for glass to spin-glass transition

    Full text link
    We present the full phase diagram of the spherical 2+p2+p spin glass model with p≥4p\geq 4. The main outcome is the presence of a new phase with both properties of Full Replica Symmetry Breaking (FRSB) phases of discrete models, e.g, the Sherrington-Kirkpatrick model, and those of One Replica Symmetry Breaking (1RSB). The phase, which separates a 1RSB phase from FRSB phase, is described by an order parameter function q(x)q(x) with a continuous part (FRSB) for x<mx<m and a discontinuous jump (1RSB) at x=mx=m. This phase has a finite complexity which leads to different dynamic and static properties.Comment: 5 pages, 2 figure
    • …
    corecore