38 research outputs found

    Technological diversification within UK’s small serial innovators

    Get PDF
    This paper investigates the determinants of technological diversification among UK’s small serial innovators (SSIs). Using a longitudinal study of 339 UK-based small businesses accounting for almost 7000 patents between 1990 and 2006, this study constitutes the first empirical examination of technological diversification among SMEs in the literature. Results demonstrate that technological diversification is not solely a large firm activity, challenging the dominant view that innovative SMEs are extremely focused and specialised players with little technological diversification. Our findings suggest a nonlinear (i.e. inverse-U-shaped) relationship between the level of technological opportunities in the environment and the SSIs’ degree of technological diversification. This points to a trade-off between processes of exploration and exploitation across increasingly volatile technology regimes. The paper also demonstrates that small firms with impactful innovations focus their innovative activity around similar technological capabilities while firms that have introduced platform technologies in the past are more likely to engage in technological diversification

    Do firms benefit from being present in multiple technology clusters? An assessment of the technological performance of biopharmaceutical firms

    Get PDF
    International audienceFirms active in knowledge-intensive fields are increasingly organizing their R&D activities on an international scale. This paper investigates whether firms active in biotechnology can improve their technological performance by developing R&D activities in multiple technology clusters. Regions in the US, Japan and Europe, that host a concentration of biotechnology activity are identified as clusters. Fixed-effect panel data analyses with 59 biopharmaceutical firms (period 1995-2002) provides evidence for a positive, albeit diminishing (inverted-U shape) relationship between the number of technology clusters in which a firm is present and its overall technological performance. This effect is distinct from a mere multi-location effect

    Controlling and monitoring stem cell safety in vivo in an experimental rodent model

    No full text
    Adult stem cells have been investigated increasingly over the past years for multiple applications. Although they have a more favorable safety profile compared to pluripotent stem cells, they are still capable of self-renewal and differentiate into several cell types. We investigated the behavior of Oct4-positive (Oct4(+) ) and Oct4-negative (Oct4(-) ) murine or rat bone marrow (BM)-derived stem cells in the healthy brain of syngeneic mice and rats. Engraftment of mouse and rat Oct4-positive BM-derived hypoblast-like stem cells (m/rOct4(+) BM-HypoSCs) resulted in yolk-sac tumor formation in the healthy brain which was monitored longitudinally using magnetic resonance imaging (MRI) and bioluminescence imaging (BLI). Contrast enhanced MRI confirmed the disruption of the blood brain barrier. In contrast, m/r Oct4-negative BM-derived multipotent adult progenitor cells (m/rOct4(-) BM-MAPCs) did not result in mass formation after engraftment into the brain. mOct4(+) BM-HypoSCs and mOct4(-) BM-MAPCs were transduced to express enhanced green fluorescent protein, firefly luciferase (fLuc), and herpes simplex virus-thymidine kinase to follow up suicide gene expression as a potential "safety switch" for tumor-forming stem cells by multimodal imaging. Both cell lines were eradicated efficiently in vivo by ganciclovir administration indicating successful suicide gene expression in vivo, as assessed by MRI, BLI, and histology. The use of suicide genes to prevent tumor formation is in particular of interest for therapeutic approaches where stem cells are used as vehicles to deliver therapeutic genes. Stem Cells 2014;32:2833-2844.status: publishe
    corecore