228 research outputs found

    A Noncausal Autoregressive Model with Time-Varying Parameters: An Application to U.S. Inflation

    Full text link
    We propose a noncausal autoregressive model with time-varying parameters, and apply it to U.S. postwar inflation. The model .fits the data well, and the results suggest that inflation persistence follows from future expectations. Persistence has declined in the early 1980.s and slightly increased again in the late 1990.s. Estimates of the new Keynesian Phillips curve indicate that current inflation also depends on past inflation although future expectations dominate. The implied trend inflation estimate evolves smoothly and is well aligned with survey expectations. There is evidence in favor of the variation of trend inflation following from the underlying marginal cost that drives inflation

    Testing for Identification in SVAR-GARCH Models: Reconsidering the Impact of Monetary Shocks on Exchange Rates

    Full text link
    Changes in residual volatility in vector autoregressive (VAR) models can be used for identifying structural shocks in a structural VAR analysis. Testable conditions are given for full identification for the case where the volatility changes can be modelled by a multivariate GARCH process. Formal statistical tests are presented for identification and their small sample properties are investigated via a Monte Carlo study. The tests are applied to investigate the validity of the identification conditions in a study of the effects of U.S. monetary policy on exchange rates. It is found that the data do not support full identification in most of the models considered, and the implied problems for the interpretation of the results are discussed

    China's Capital Controls Through the Prism of Covered Interest Differentials

    Full text link
    We study the renminbi (RMB) covered interest differential - an indicator of the effectiveness of capital controls. It is found that the differential is not shrinking over time and, in fact, appears larger after the global financial crisis than before. That is, capital controls in China are still substantial and effective. In addition to exchange rate changes and volatilities, the RMB covered interest differential is affected by credit market tightness indicators. The marginal explanatory power of these macroeconomic factors, however, is small relative to the autoregressive component and the dummy variables that capture changes in China's policy

    Bayesian Inference for Structural Vector Autoregressions Identified by Markov-Switching Heteroskedasticity

    Full text link
    In this study, Bayesian inference is developed for structural vector autoregressive models in which the structural parameters are identified via Markov-switching heteroskedasticity. In such a model, restrictions that are just-identifying in the homoskedastic case, become over-identifying and can be tested. A set of parametric restrictions is derived under which the structural matrix is globally or partially identified and a Savage-Dickey density ratio is used to assess the validity of the identification conditions. The latter is facilitated by analytical derivations that make the computations fast and numerical standard errors small. As an empirical example, monetary models are compared using heteroskedasticity as an additional device for identification. The empirical results support models with money in the interest rate reaction function.Comment: Keywords: Identification Through Heteroskedasticity, Bayesian Hypotheses Assessment, Markov-switching Models, Mixture Models, Regime Chang

    Structural Vector Autoregressions: Checking Identifying Long-Run Restrictions via Heteroskedasticity

    Full text link
    Long-run restrictions have been used extensively for identifying structural shocks in vector autoregressive (VAR) analysis. Such restrictions are typically just-identifying but can be checked by utilizing changes in volatility. This paper reviews and contrasts the volatility models that have been used for this purpose. Three main approaches have been used, exogenously generated changes in the unconditional residual covariance matrix, changing volatility modelled by a Markov switching mechanism and multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models. Using changes in volatility for checking long-run identifying restrictions in structural VAR analysis is illustrated by reconsidering models for identifying fundamental components of stock prices
    corecore