54 research outputs found

    Complementary action of chemical and electrical synapses to perception

    Get PDF
    Acknowledgements This study was possible by partial financial support from the following agencies: Fundação Araucária, EPSRC-EP/I032606/1, CNPq No. 441553/2014-1, CAPES No. 17656-12-5 and Science Without Borders Program— Process Nos. 17656125, 99999.010583/2013-00 and 245377/2012-3.Peer reviewedPostprin

    P2X7 receptor isoform B is a key drug resistance mediator for neuroblastoma

    Get PDF
    Drug resistance is a major challenge for all oncological treatments that involve the use of cytotoxic agents. Recent therapeutic alternatives cannot circumvent the ability of cancer cells to adapt or alter the natural selection of resistant cells, so the problem persists. In neuroblastoma, recurrence can occur in up to 50% of high-risk patients. Therefore, the identification of novel therapeutic targets capable of modulating survival or death following classical antitumor interventions is crucial to address this problem. In this study, we investigated the role of the P2X7 receptor in chemoresistance. Here, we elucidated the contributions of P2X7 receptor A and B isoforms to neuroblastoma chemoresistance, demonstrating that the B isoform favors resistance through a combination of mechanisms involving drug efflux via MRP-type transporters, resistance to retinoids, retaining cells in a stem-like phenotype, suppression of autophagy, and EMT induction, while the A isoform has opposite and complementary roles

    Alterations in brain connectivity due to plasticity and synaptic delay

    Full text link
    Brain plasticity refers to brain's ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronisation in a neuronal network with synaptic plasticity. We build a network of Hodgkin-Huxley neurons, where the plasticity is given by the Hebbian rules. We verify that without time delay the excitatory synapses became stronger from the high frequency to low frequency neurons and the inhibitory synapses increases in the opposite way, when the delay is increased the network presents a non-trivial topology. Regarding the synchronisation, only for small values of the synaptic delay this phenomenon is observed
    corecore