179 research outputs found

    Articulated blade tip devices for load alleviation on wind turbines

    Get PDF
    This paper investigates the load alleviation capabilities of an articulated tip device, where the outermost portion of the blade can rotate with respect to the rest of the blade. Passive, semi-passive and active solutions are developed for the tip rotation. In the passive and semi-passive configurations tip pitching is mainly driven by aerodynamic loads, while for the active case the rotation is obtained with an actuator commanded by a feedback control law. Each configuration is analyzed and tested using a high-fidelity aeroservoelastic simulation environment, by considering standard operative conditions as well as fault situations. The potential benefits of the proposed blade tip concepts are discussed in terms of performance and robustness

    'R&D and export performance: exploring heterogeneity along the export intensity distribution'

    Get PDF
    This study analyses the relationship between firm-level innovative effort as measured by R&D expenditures and export intensity. We apply quantile regression techniques to a sample of Italian firms to verify whether R&D expenditures’ effect varies along the conditional distribution of export intensity, after controlling for censoring and endogeneity issues. Empirical findings suggest that the effect of R&D expenditures on export intensity is positive and that firms taking most advantage from R&D activity are in the right tail of the export intensity distribution (from the 70th quantile onwards), that is, those exporting 50% of their sales or more. Overall, the results prove robust to several specification checks and suggest not only that firms’ innovative efforts help explaining heterogeneity in export intensity performance, but also that its positive effect differs across the export to sales ratio distribution. This implies that innovation policy measures might be more effective for firms characterised by a relatively high export intensive margin

    Combined preliminary–detailed design of wind turbines

    Get PDF
    This paper is concerned with the holistic optimization of wind turbines. A multi-disciplinary optimization procedure is presented that marries the overall sizing of the machine in terms of rotor diameter and tower height (often termed “preliminary design”) with the detailed sizing of its aerodynamic and structural components. The proposed combined preliminary–detailed approach sizes the overall machine while taking into full account the subtle and complicated couplings that arise due to the mutual effects of aerodynamic and structural choices. Since controls play a central role in dictating performance and loads, control laws are also updated accordingly during optimization. As part of the approach, rotor and tower are sized simultaneously, even in this case capturing the mutual effects of one component over the other due to the tip clearance constraint. The procedure, here driven by detailed models of the cost of energy, results in a complete aero-structural design of the machine, including its associated control laws. The proposed methods are tested on the redesign of two wind turbines, a 2.2 MW onshore machine and a large 10 MW offshore one. In both cases, the optimization leads to significant changes with respect to the initial baseline configurations, with noticeable reductions in the cost of energy. The novel procedures are also exercised on the design of low-induction rotors for both considered wind turbines, showing that they are typically not competitive with conventional high-efficiency rotors

    Periodic stability analysis of wind turbines operating in turbulent wind conditions

    Get PDF
    The formulation is model-independent, in the sense that it does not require knowledge of the equations of motion of the periodic system being analyzed, and it is applicable to an arbitrary number of blades and to any configuration of the machine. In addition, as wind turbulence can be viewed as a stochastic disturbance, the method is also applicable to real wind turbines operating in the field. The characteristics of the new method are verified first with a simplified analytical model and then using a high-fidelity multi-body model of a multi-MW wind turbine. Results are compared with those obtained by the well-known operational modal analysis approach

    Automatic detection and correction of pitch misalignment in wind turbine rotors

    Get PDF
    In this work, a new algorithm is presented to correct for pitch misalignment imbalances of wind turbine rotors. The method uses signals measured in the fixed frame of the machine, typically in the form of accelerations or loads. The amplitude of the one per revolution signal harmonic is used to quantify the imbalance, while its phase is used to locate the unbalanced blade(s). The near linearity of the unknown relationship between harmonic amplitude and pitch misalignment is used to derive a simple algorithm that iteratively rebalances the rotor. This operation is conducted while the machine is in operation, without the need for shutting it down. The method is not only applicable to the case of a single misaligned blade, but also to the generic case of multiple concurrent imbalances. Apart from the availability of acceleration or load sensors, the method requires the ability of the rotor blades to be commanded independently from one another, which is typically possible on many modern machines. The new method is demonstrated in a realistic simulation environment using an aeroservoelastic wind turbine model in a variety of wind and operating conditions.</p

    Lightweight rotor design by optimal spar cap offset

    Get PDF
    Bend-twist coupling behavior is induced in a blade by displacing the suction side spar cap towards the leading edge, and the pressure side one in the opposite direction. Additional couplings are introduced by rotating the spar cap fibers. The structural configuration of the blade is optimized using an automated design environment. The resulting blade shows significant benefits in terms of mass and loads when compared to the baseline uncoupled one. Finally, the lightweight design concept is used to increase the rotor size, resulting in a larger energy yield for the same hub loads

    Brief communication: Wind inflow observation from load harmonics – wind tunnel validation of the rotationally symmetric formulation

    Get PDF
    The present paper further develops and experimentally validates the previously published idea of estimating the wind inflow at a turbine rotor disk from the machine response. A linear model is formulated that relates one per revolution (1P) harmonics of the in- and out-of-plane blade root bending moments to four wind parameters, representing vertical and horizontal shears and misalignment angles. Improving on this concept, the present work exploits the rotationally symmetric behavior of the rotor in the formulation of the load-wind model. In a nutshell, this means that the effects on the loads of the vertical shear and misalignment are the same as those of the horizontal quantities, simply shifted by π∕2. This results in a simpler identification of the model, which needs a reduced set of observations. The performance of the proposed method is first tested in a simulation environment and then validated with an experimental data set obtained with an aeroelastically scaled turbine model in a boundary layer wind tunnel.</p

    Wake behavior and control: comparison of LES simulations and wind tunnel measurements

    Get PDF
    This paper applies a large-eddy actuator line approach to the simulation of wind turbine wakes. In addition to normal operating conditions, a specific focus of the paper is on wake manipulation, which is performed here by derating, yaw misalignment and cyclic pitching of the blades. With the purpose of clarifying the ability of LES methods to represent conditions that are relevant for wind farm control, numerical simulations are compared to experimental observations obtained in a boundary layer wind tunnel with scaled wind turbine models. Results indicate a good overall matching of simulations with experiments. Low-turbulence test cases appear to be more challenging than moderate- and high-turbulence ones due to the need for denser grids to limit numerical diffusion and accurately resolve tip-shed vortices in the near-wake region.</p
    • …
    corecore