329 research outputs found
Understanding of the Retarded Oxidation Effects in Silicon Nanostructures
In-depth understanding of the retarded oxidation phenomenon observed during
the oxidation of silicon nanostructures is proposed. The wet thermal oxidation
of various silicon nanostructures such as nanobeams, concave/convex nanorings
and nanowires exhibits an extremely different and complex behavior. Such
effects have been investigated by the modeling of the mechanical stress
generated during the oxidation process explaining the retarded regime. The
model describes the oxidation kinetics of silicon nanowires down to a few
nanometers while predicting reasonable and physical stress levels at the
Si/SiO interface by correctly taking into account the relaxation effects
in silicon oxide through plastic flow
Nanoelectronics
In this chapter we intend to discuss the major trends in the evolution of
microelectronics and its eventual transition to nanoelectronics. As it is well
known, there is a continuous exponential tendency of microelectronics towards
miniaturization summarized in G. Moore's empirical law. There is consensus that
the corresponding decrease in size must end in 10 to 15 years due to physical
as well as economical limits. It is thus necessary to prepare new solutions if
one wants to pursue this trend further. One approach is to start from the
ultimate limit, i.e. the atomic level, and design new materials and components
which will replace the present day MOS (metal-oxide-semi- conductor) based
technology. This is exactly the essence of nanotechnology, i.e. the ability to
work at the molecular level, atom by atom or molecule by molecule, to create
larger structures with fundamentally new molecular orga- nization. This should
lead to novel materials with improved physical, chemi- cal and biological
properties. These properties can be exploited in new devices. Such a goal would
have been thought out of reach 15 years ago but the advent of new tools and new
fabrication methods have boosted the field. We want to give here an overview of
two different subfields of nano- electronics. The first part is centered on
inorganic materials and describes two aspects: i) the physical and economical
limits of the tendency to miniaturiza- tion; ii) some attempts which have
already been made to realize devices with nanometric size. The second part
deals with molecular electronics, where the basic quantities are now molecules,
which might offer new and quite interest- ing possibilities for the future of
nanoelectronicsComment: HAL : hal-00710039, version 2. This version corrects some aspect
concerning the metal-insulator-metal without dot
Adsorption behavior of conjugated {C}3-oligomers on Si(100) and HOPG surfaces
A pi-conjugated {C}3h-oligomer involving three dithienylethylene branches
bridged at the meta positions of a central benzenic core has been synthesized
and deposited either on the Si(100) surface or on the HOPG surface. On the
silicon surface, scanning tunneling microscopy allows the observation of
isolated molecules. Conversely, by substituting the thiophene rings of the
oligomers with alkyl chains, a spontaneous ordered film is observed on the HOPG
surface. As the interaction of the oligomers is different with both surfaces,
the utility of the Si(100) surface to characterize individual oligomers prior
to their use into a 2D layer is discussed
Eclipsing binaries in the old open cluster NGC 2243
We report discovery of two contact binaries and two detached eclipsing binaries in the central part of NGC 2243
Non-woven polypropylene fabric modified with carbon nanotubes and decorated with nanoakaganeite for arsenite removal
Due to its harmful impact on human health, the presence of heavy metals, metalloids and other toxic pollutants in drinking or irrigation water is a major concern. Recent studies have proved that nanosized adsorbents are significantly more effective than their microsized counterparts. Particular attention has been given to nanocomposites with nanoadsorbents embedded in matrixes that could provide stability to the material and contribute to eliminating problems that may appear when using conventional granular systems. This study presents the preparation of a novel hybrid filter from a commercially available polypropylene (PP) non-woven fabric matrix modified with multiwall carbon nanotubes (MWCNT) and iron oxy(hydroxide) nanoparticles, and its use in the removal of As(III). A BoxâBehnken statistical experimental design has been chosen to explore relevant variables affecting the filter performance: (1) As(III) concentration, (2) pH and (3) sorbent dose. From an As(III) concentration of 10 mg Lâ1, at pH 6.5 and with a sorbent dose of 5 g Lâ1, the PP filter modified with MWCNT removes 10% of the initial metalloid concentration, reaching a capacity of 0.27 mg gâ1. After modification with iron oxy(hydroxide), the performance of the material is largely enhanced. The filter, under the same conditions, removes 90% of the initial As(III) concentration, reaching a capacity almost tenfold higher (2.54 mg gâ1). This work demonstrates that the developed hybrid filter is effective toward the removal of As(III) in a wide range of pHs. A cubic regression model to compute the removal of the filter as a function of pH and sorbent dose is provided.acceptedVersio
Concentrating Membrane Proteins Using Asymmetric Traps and AC Electric Fields
Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a ânested trapâ and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins
Current rectification by simple molecular quantum dots: an ab-initio study
We calculate a current rectification by molecules containing a conjugated
molecular group sandwiched between two saturated (insulating) molecular groups
of different length (molecular quantum dot) using an ab-initio non-equilibrium
Green's function method. In particular, we study S-(CH2)m-C10H6-(CH2)n-S
dithiol with Naphthalene as a conjugated central group. The rectification
current ratio ~35 has been observed at m = 2 and n = 10, due to resonant
tunneling through the molecular orbital (MO) closest to the electrode Fermi
level (lowest unoccupied MO in the present case). The rectification is limited
by interference of other conducting orbitals, but can be improved by e.g.
adding an electron withdrawing group to the naphthalene.Comment: 8 pages, 9 figure
- âŠ