140 research outputs found
Optimal Kullback-Leibler Aggregation via Information Bottleneck
In this paper, we present a method for reducing a regular, discrete-time
Markov chain (DTMC) to another DTMC with a given, typically much smaller number
of states. The cost of reduction is defined as the Kullback-Leibler divergence
rate between a projection of the original process through a partition function
and a DTMC on the correspondingly partitioned state space. Finding the reduced
model with minimal cost is computationally expensive, as it requires an
exhaustive search among all state space partitions, and an exact evaluation of
the reduction cost for each candidate partition. Our approach deals with the
latter problem by minimizing an upper bound on the reduction cost instead of
minimizing the exact cost; The proposed upper bound is easy to compute and it
is tight if the original chain is lumpable with respect to the partition. Then,
we express the problem in the form of information bottleneck optimization, and
propose using the agglomerative information bottleneck algorithm for searching
a sub-optimal partition greedily, rather than exhaustively. The theory is
illustrated with examples and one application scenario in the context of
modeling bio-molecular interactions.Comment: 13 pages, 4 figure
Global parameter identification of stochastic reaction networks from single trajectories
We consider the problem of inferring the unknown parameters of a stochastic
biochemical network model from a single measured time-course of the
concentration of some of the involved species. Such measurements are available,
e.g., from live-cell fluorescence microscopy in image-based systems biology. In
addition, fluctuation time-courses from, e.g., fluorescence correlation
spectroscopy provide additional information about the system dynamics that can
be used to more robustly infer parameters than when considering only mean
concentrations. Estimating model parameters from a single experimental
trajectory enables single-cell measurements and quantification of cell--cell
variability. We propose a novel combination of an adaptive Monte Carlo sampler,
called Gaussian Adaptation, and efficient exact stochastic simulation
algorithms that allows parameter identification from single stochastic
trajectories. We benchmark the proposed method on a linear and a non-linear
reaction network at steady state and during transient phases. In addition, we
demonstrate that the present method also provides an ellipsoidal volume
estimate of the viable part of parameter space and is able to estimate the
physical volume of the compartment in which the observed reactions take place.Comment: Article in print as a book chapter in Springer's "Advances in Systems
Biology
Spatial Modeling of Vesicle Transport and the Cytoskeleton: The Challenge of Hitting the Right Road
The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling
Effect of Network Architecture on Synchronization and Entrainment Properties of the Circadian Oscillations in the Suprachiasmatic Nucleus
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus constitutes the central circadian pacemaker. The SCN receives light signals from the retina and controls peripheral circadian clocks (located in the cortex, the pineal gland, the liver, the kidney, the heart, etc.). This hierarchical organization of the circadian system ensures the proper timing of physiological processes. In each SCN neuron, interconnected transcriptional and translational feedback loops enable the circadian expression of the clock genes. Although all the neurons have the same genotype, the oscillations of individual cells are highly heterogeneous in dispersed cell culture: many cells present damped oscillations and the period of the oscillations varies from cell to cell. In addition, the neurotransmitters that ensure the intercellular coupling, and thereby the synchronization of the cellular rhythms, differ between the two main regions of the SCN. In this work, a mathematical model that accounts for this heterogeneous organization of the SCN is presented and used to study the implication of the SCN network topology on synchronization and entrainment properties. The results show that oscillations with larger amplitude can be obtained with scale-free networks, in contrast to random and local connections. Networks with the small-world property such as the scale-free networks used in this work can adapt faster to a delay or advance in the light/dark cycle (jet lag). Interestingly a certain level of cellular heterogeneity is not detrimental to synchronization performances, but on the contrary helps resynchronization after jet lag. When coupling two networks with different topologies that mimic the two regions of the SCN, efficient filtering of pulse-like perturbations in the entrainment pattern is observed. These results suggest that the complex and heterogeneous architecture of the SCN decreases the sensitivity of the network to short entrainment perturbations while, at the same time, improving its adaptation abilities to long term changes
‘Glocal’ Robustness Analysis and Model Discrimination for Circadian Oscillators
To characterize the behavior and robustness of cellular circuits with many unknown parameters is a major challenge for systems biology. Its difficulty rises exponentially with the number of circuit components. We here propose a novel analysis method to meet this challenge. Our method identifies the region of a high-dimensional parameter space where a circuit displays an experimentally observed behavior. It does so via a Monte Carlo approach guided by principal component analysis, in order to allow efficient sampling of this space. This ‘global’ analysis is then supplemented by a ‘local’ analysis, in which circuit robustness is determined for each of the thousands of parameter sets sampled in the global analysis. We apply this method to two prominent, recent models of the cyanobacterial circadian oscillator, an autocatalytic model, and a model centered on consecutive phosphorylation at two sites of the KaiC protein, a key circadian regulator. For these models, we find that the two-sites architecture is much more robust than the autocatalytic one, both globally and locally, based on five different quantifiers of robustness, including robustness to parameter perturbations and to molecular noise. Our ‘glocal’ combination of global and local analyses can also identify key causes of high or low robustness. In doing so, our approach helps to unravel the architectural origin of robust circuit behavior. Complementarily, identifying fragile aspects of system behavior can aid in designing perturbation experiments that may discriminate between competing mechanisms and different parameter sets
Inferring causal molecular networks: empirical assessment through a community-based effort.
It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense
- …