648 research outputs found
The Slitmask Alignment Tool: robust, efficient, and astronomer-friendly software for aligning multi-object slitmasks
Multi-object spectroscopy via custom slitmasks is a key capability on three instruments at the W. M. Keck Observatory. Before observers can acquire spectra they must complete a complex procedure to align each slit with its corresponding science target. We developed the Slitmask Alignment Tool (SAT), to replace a complex, inefficient, and error-prone slitmask alignment process that often resulted in lost sky time for novice and experienced observers alike. The SAT accomplishes rapid initial mask alignment, prevents field misidentification, accurately predicts alignment box image locations, corrects for flexure-induced image displacement, verifies the instrument and exposure configuration, and accommodates both rectangular and trapezoidal alignment box shapes. The SAT is designed to lead observers through the alignment process and coordinate image acquisition with instrument and telescope moves to improve efficiencies. By simplifying the process to just a few mouse clicks, the SAT enables even novice observers to achieve robust, efficient, and accurate alignment of slitmasks on all three Keck instruments supporting multislit spectroscopy, saving substantial observing time
Documentation of specific mesh implant at the time of midurethral sling surgery in women with stress incontinence
Objective: We aimed to assess documentation completeness of the operative record for mesh implanted at the time of midurethral sling surgery and to identify modifiable predictors of documentation completeness.
Methods: A retrospective cross-sectional study of women with stress incontinence who underwent midurethral sling placement between January 2009 and December 2011 was conducted. Data from the dictated operative note and nursing operative record were extracted to determine if the specific mesh implanted during surgery was documented. The primary outcome was the rate of documentation of mesh implanted in the physician's dictated operative note and in the nursing record. Logistic regression was used to determine if any characteristics were associated with the rate of documentation while accounting for correlation of patients from the same dictating surgeon.
Results: There were 816 surgeries involving the implantation of a midurethral sling during the study period. All surgeries were performed at 6 Indiana University hospitals. Fifty-two surgeons of varying specialties and levels of training dictated the operative notes. A urogynecologist dictated 71% of the operative notes. The rate of documentation completeness for mesh implanted in the physician's note was 10%. The rate of documentation completeness for mesh implanted in the nursing operative record was 92%. Documentation of mesh implanted in the physician's note was not significantly associated with the level of training, specialty, or year of surgery.
Conclusions: Documentation completeness for specific mesh implant in the physician's note is low, independent of specialty and level of training. Nursing documentation practices are more rigorous. Postmarket surveillance, currently mandated by the Food and Drug Administration, may not be feasible if only the physician's note is available or if nursing practices are inconsistent. Development of documentation guidelines for physicians would improve the feasibility of surveillance
Mid-Infrared Photometry and Spectra of Three High Mass Protostellar Candidates at IRAS 18151-1208 and IRAS 20343+4129
We present arcsecond-scale mid-ir photometry (in the 10.5 micron N band and
at 24.8 microns), and low resolution spectra in the N band (R~100) of a
candidate high mass protostellar object (HMPO) in IRAS 18151-1208 and of two
HMPO candidates in IRAS 20343+4129, IRS 1 and IRS 3. In addition we present
high resolution mid-ir spectra (R~80000) of the two HMPO candidates in IRAS
20343+4129. These data are fitted with simple models to estimate the masses of
gas and dust associated with the mid-ir emitting clumps, the column densities
of overlying absorbing dust and gas, the luminosities of the HMPO candidates,
and the likely spectral type of the HMPO candidate for which [Ne II] 12.8
micron emission was detected (IRAS 20343+4129 IRS 3). We suggest that IRAS
18151-1208 is a pre-ultracompact HII region HMPO, IRAS 20343+4129 IRS 1 is an
embedded young stellar object with the luminosity of a B3 star, and IRAS
20343+4129 IRS 3 is a B2 ZAMS star that has formed an ultracompact HII region
and disrupted its natal envelope.Comment: 40 pages, 8 figures, 3 tables. Accepted for publication in
Astrophysical Journal (Part 1
P-Element Homing Is Facilitated by engrailed Polycomb-Group Response Elements in Drosophila melanogaster
P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the engrailed/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (enΔ1.5) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the enΔ1. 5 chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2], a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailed/invected chromatin domain. Chromatin structure may also play a role in homing
If you could see what we see, would it bother you?
Objective
The purpose of our study was to determine whether the anatomic threshold for pelvic organ prolapse (POP) diagnosis and surgical success remains valid when the patient sees what we see on exam.
Methods
Two hundred participants were assigned, by computer-generated block randomization, to see one of four videos. Each video contained the same six clips representative of various degrees of anterior vaginal wall support. Participants were asked questions immediately after each clip. They were asked: “In your opinion, does this patient have a bulge or something falling out that she can see or feel in the vaginal area?” Similarly, they were asked to give their opinion on surgical outcome on a 4-point Likert scale.
Results
The proportion of participants who identified the presence of a vaginal bulge increased substantially at the level of early stage 2 prolapse (1 cm above the hymen), with 67 % answering yes to the question regarding bulge. The proportion of participants who felt that surgical outcome was less desirable also increased substantially at early stage 2 prolapse (1 cm above the hymen), with 52 % describing that outcome as “not at all” or “somewhat” successful.
Conclusion
Early stage 2 POP (1 cm above the hymen) is the anatomic threshold at which women identify both a vaginal bulge and a less desirable surgical outcome when they see what we see on examination
The Slitmask Alignment Tool: robust, efficient, and astronomer-friendly software for aligning multi-object slitmasks
Multi-object spectroscopy via custom slitmasks is a key capability on three instruments at the W. M. Keck Observatory. Before observers can acquire spectra they must complete a complex procedure to align each slit with its corresponding science target. We developed the Slitmask Alignment Tool (SAT), to replace a complex, inefficient, and error-prone slitmask alignment process that often resulted in lost sky time for novice and experienced observers alike. The SAT accomplishes rapid initial mask alignment, prevents field misidentification, accurately predicts alignment box image locations, corrects for flexure-induced image displacement, verifies the instrument and exposure configuration, and accommodates both rectangular and trapezoidal alignment box shapes. The SAT is designed to lead observers through the alignment process and coordinate image acquisition with instrument and telescope moves to improve efficiencies. By simplifying the process to just a few mouse clicks, the SAT enables even novice observers to achieve robust, efficient, and accurate alignment of slitmasks on all three Keck instruments supporting multislit spectroscopy, saving substantial observing time
Dust Emission from Evolved and Unevolved HII Regions in the Large Magellanic Cloud
We present a study of the dust properties of 12 classical and superbubble HII
regions in the Large Magellanic Cloud. We use infrared photometry from Spitzer
(8, 24, 70, and 160 \mum bands), obtained as part of the Surveying the Agents
of a Galaxy's Evolution (SAGE) program, along with archival spectroscopic
classifications of the ionizing stars to examine the role of stellar sources on
dust heating and processing. Our infrared observations show surprisingly little
correlation between the emission properties of the dust and the effective
temperatures or bolometric magnitudes of stars in the HII regions, suggesting
that the HII region evolutionary timescale is not on the order of the dust
processing timescale. We find that the infrared emission of superbubbles and
classical HII regions shows little differentiation between the two classes,
despite the significant differences in age and morphology. We do detect a
correlation of the 24 \mum emission from hot dust with the ratio of 70 to 160
\mum flux. This correlation can be modeled as a trend in the temperature of a
minority hot dust component, while a majority of the dust remains significantly
cooler.Comment: 15 pages, 5 figures. Accepted to Ap
Trumpler 20 - an old and rich open cluster
We show that the open cluster Trumpler 20, contrary to the earlier findings,
is actually an old Galactic open cluster. New CCD photometry and
high-resolution spectroscopy are used to derive the main parameters of this
cluster. At [Fe/H]=-0.11 for a single red giant star, the metallicity is
slightly subsolar. The best fit to the color-magnitude diagrams is achieved
using a 1.3 Gyr isochrone with convective overshoot. The cluster appears to
have a significant reddening at E(B-V)=0.46 (for B0 spectral type), although
for red giants this high reddening yields the color temperature exceeding the
spectroscopic T_eff by about 200 K. Trumpler 20 is a very rich open cluster,
containing at least 700 members brighter than M_V=+4. It may extend over the
field-of-view available in our study at 20'x20'.Comment: 7 pages, 5 figures; accepted for publication in MNRA
- …