1,045 research outputs found

    Absence of Translational Symmetry Breaking in Nonmagnetic Insulator Phase on Two-Dimensional Lattice with Geometrical Frustration

    Full text link
    The ground-state properties of the two-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hoppings at half filling are studied by the path-integral-renormalization-group method. The nonmagnetic-insulator phase sandwiched by the the paramagnetic-metal phase and the antiferromagnetic-insulator phase shows evidence against translational symmetry breaking of the dimerized state, plaquette singlet state, staggered flux state, and charge ordered state. These results support that the genuine Mott insulator which cannot be adiabatically continued to the band insulator is realized generically by Umklapp scattering through the effects of geometrical frustration and quantum fluctuation in the two-dimensional system.Comment: 4 pages and 7 figure

    An extrapolation method for shell model calculations

    Get PDF
    We propose a new shell model method, combining the Lanczos digonalization and extrapolation method. This method can give accurate shell model energy from a series of shell model calculations with various truncation spaces, in a well-controlled manner. Its feasibility is demonstrated by taking the fp shell calculations.Comment: 4 pages, 5 figure

    Gossamer Superconductor, Mott Insulator, and Resonating Valence Bond State in Correlated Electron Systems

    Full text link
    Gutzwiller variational method is applied to an effective two-dimensional Hubbard model to examine the recently proposed gossamer superconductor by Laughlin. The ground state at half filled electron density is a gossamer superconductor for smaller intra-site Coulomb repulsion U and a Mott insulator for larger U. The gossamer superconducting state is similar to the resonant valence bond superconducting state, except that the chemical potential is approximately pinned at the mid of the two Hubbard bands away from the half filled

    Thermodynamic Relations in Correlated Systems

    Full text link
    Several useful thermodynamic relations are derived for metal-insulator transitions, as generalizations of the Clausius-Clapeyron and Eherenfest theorems. These relations hold in any spatial dimensions and at any temperatures. First, they relate several thermodynamic quantities to the slope of the metal-insulator phase boundary drawn in the plane of the chemical potential and the Coulomb interaction in the phase diagram of the Hubbard model. The relations impose constraints on the critical properties of the Mott transition. These thermodynamic relations are indeed confirmed to be satisfied in the cases of the one- and two-dimensional Hubbard models. One of these relations yields that at the continuous Mott transition with a diverging charge compressibility, the doublon susceptibility also diverges. The constraints on the shapes of the phase boundary containing a first-order metal-insulator transition at finite temperatures are clarified based on the thermodynamic relations. For example, the first-order phase boundary is parallel to the temperature axis asymptotically in the zero temperature limit. The applicability of the thermodynamic relations are not restricted only to the metal-insulator transition of the Hubbard model, but also hold in correlated systems with any types of phases in general. We demonstrate such examples in an extended Hubbard model with intersite Coulomb repulsion containing the charge order phase.Comment: 10 pages, 9 figure

    Braneworld Cosmology in (Anti)--de Sitter Einstein--Gauss--Bonnet--Maxwell Gravity

    Get PDF
    Braneworld cosmology for a domain wall embedded in the charged (Anti)-de Sitter-Schwarzschildblack hole of the five--dimensional Einstein-Gauss-Bonnet-Maxwell theory is considered. The effective Friedmann equation for the brane is derived by introducing the necessary surface counterterms required for a well-defined variational principlein the Gauss--Bonnet theory and for the finiteness of the bulk space. The asymptotic dynamics of the brane cosmology is determined and it is found that solutions with vanishingly small spatial volume are unphysical. The finiteness of the bulk action is related to the vanishing of the effective cosmological constant on the brane. An analogy between the Friedmann equation and a generalized Cardy--Verlinde formula is drawn.Comment: LaTex file 28 pages, typos corrected, one reference is adde

    Ab initio Derivation of Low-energy Model for Iron-Based Superconductors LaFeAsO and LaFePO

    Full text link
    Effective Hamiltonians for LaFeAsO and LaFePO are derived from the downfolding scheme based on first-principles calculations and provide insights for newly discovered superconductivity in the family of LnFeAsO1x_{1-x}Fx_x, Ln = La, Ce, Pr, Nd, Sm, and Gd. Extended Hubbard Hamiltonians for five maximally localized Wannier orbitals per Fe are constructed dominantly from five-fold degenerate iron-3dd bands. They contain parameters for effective Coulomb and exchange interactions screened by the polarization of other electrons away from the Fermi level. The onsite Coulomb interaction estimated as 2.2-3.3 eV is compared with the transfer integrals between the nearest-neighbor Fe-3dd Wannier orbitals, 0.2-0.3 eV, indicating moderately strong electron correlation. The Hund's rule coupling is found to be 0.3-0.6 eV. The derived model offers a firm basis for further studies on physics of this family of materials. The effective models for As and P compounds turn out to have very similar screened interactions with slightly narrower bandwidth for the As compound.Comment: 5 pages, 3 figures, 1 table; to appear in J. Phys. Soc. Jpn. Vol. 77 No.9: Revised version contains corrected table values and discussions of quantitative accuracy of constrained random-phase approximatio

    Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method

    Full text link
    Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb repulsion. On the other hand, they are separated each other for lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and metal-insulator transitions appears to show violation of the Luttinger sum rule. Through the metal-insulator transition, quasiparticles retain nonzero renormalization factor and finite quasi-particle weight in the both sides of the transition. This supports that the metal-insulator transition is caused not by the vanishing renormalization factor but by the relative shift of the Fermi level into the Mott gap away from the quasiparticle band, in sharp contrast with the original dynamical mean-field theory. Charge compressibility diverges at the critical end point of the first-order Lifshitz transition at finite temperatures. The origin of the divergence is ascribed to singular momentum dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure
    corecore