115 research outputs found
Coordinate representation of particle dynamics in AdS and in generic static spacetimes
We discuss the quantum dynamics of a particle in static curved spacetimes in
a coordinate representation. The scheme is based on the analysis of the squared
energy operator E^2, which is quadratic in momenta and contains a scalar
curvature term. Our main emphasis is on AdS spaces, where this term is fixed by
the isometry group. As a byproduct the isometry generators are constructed and
the energy spectrum is reproduced. In the massless case the conformal symmetry
is realized as well. We show the equivalence between this quantization and the
covariant quantization, based on the Klein-Gordon type equation in AdS. We
further demonstrate that the two quantization methods in an arbitrary
(N+1)-dimensional static spacetime are equivalent to each other if the scalar
curvature terms both in the operator E^2 and in the Klein-Gordon type equation
have the same coefficient equal to (N-1)/(4N).Comment: 14 pages, no figures, typos correcte
Solitons and AdS String Solutions
In this contribution we describe some soliton based techniques for generating
classical AdS string solutions. The methods introduced are useful for further
understanding of rotating AdS configurations with spikes which correspond to
higher twist operators in SYM theory. The main identification (accomplished in
arXiv:0712.1193) between solitons and string spikes is reviewed and extended.
We describe how inverse scattering technique can be applied for reconstructing
AdS string configurations from soliton solutions of sinh-Gordon theory (in the
example of ).Comment: 10 pages, 3 figures, contribution to Proceedings of Osaka workshop,
OCU, December 200
A New and Elementary CP^n Dyonic Magnon
We show that the dressing transformation method produces a new type of dyonic
CP^n magnon in terms of which all the other known solutions are either
composites or arise as special limits. In particular, this includes the
embedding of Dorey's dyonic magnon via an RP^3 subspace of CP^n. We also show
how to generate Dorey's dyonic magnon directly in the S^n sigma model via the
dressing method without resorting to the isomorphism with the SU(2) principle
chiral model when n=3. The new dyon is shown to be either a charged dyon or
topological kink of the related symmetric-space sine-Gordon theories associated
to CP^n and in this sense is a direct generalization of the soliton of the
complex sine-Gordon theory.Comment: 21 pages, JHEP3, typos correcte
Generating AdS String Solutions
We use a Pohlmeyer type reduction to generate classical string solutions in
AdS spacetime. In this framework we describe a correspondence between spikes in
AdS_3 and soliton profiles of the sinh-Gordon equation. The null cusp string
solution and its closed spinning string counterpart are related to the
sinh-Gordon vacuum. We construct classical string solutions corresponding to
sinh-Gordon solitons, antisolitons and breathers by the inverse scattering
technique. The breather solutions can also be reproduced by the sigma model
dressing method.Comment: 21 pages, 3 figures, references adde
Scattering of Giant Magnons in CP^3
We study classical scattering phase of CP^2 dyonic giant magnons in R_t x
CP^3. We construct two-soliton solutions explicitly by the dressing method.
Using these solutions, we compute the classical time delays for the scattering
of giant magnons, and compare them to boundstate S-matrix elements derived from
the conjectured AdS_4/CFT_3 S-matrix by Ahn and Nepomechie in the strong
coupling limit. Our result is consistent with the conjectured S-matrix. The
dyonic solutions play an essential role in revealing the polarization
dependence of scattering phase.Comment: 29 pages; v2: minor corrections; v3: minor corrections, references
added ; v4: minor corrections ; v5: minor corrections based on the published
versio
Dressing the Giant Magnon II
We extend our earlier work by demonstrating how to construct classical string
solutions describing arbitrary superpositions of scattering and bound states of
dyonic giant magnons on S^5 using the dressing method for the SU(4)/Sp(2) coset
model. We present a particular scattering solution which generalizes solutions
found in hep-th/0607009 and hep-th/0607044 to the case of arbitrary magnon
momenta. We compute the classical time delay for the scattering of two dyonic
magnons carrying angular momenta with arbitrary relative orientation on the
S^5.Comment: 13 pages, harvma
Giant magnons and non-maximal giant gravitons
We produce the open strings on that correspond to
the solutions of integrable boundary sine-Gordon theory by making use of the
-magnon solutions provided in \cite{KPV} together with explicit moduli.
Relating the two boundary parameters in a special way we describe the
scattering of giant magnons with non-maximal giant gravitons and
calculate the leading contribution to the associated magnon scattering phase.Comment: 34 pages, 8 figure
Giant Magnons and Singular Curves
We obtain the giant magnon of Hofman-Maldacena and its dyonic generalisation
on R x S^3 < AdS_5 x S^5 from the general elliptic finite-gap solution by
degenerating its elliptic spectral curve into a singular curve. This alternate
description of giant magnons as finite-gap solutions associated to singular
curves is related through a symplectic transformation to their already
established description in terms of condensate cuts developed in
hep-th/0606145.Comment: 34 pages, 17 figures, minor change in abstrac
Moduli Dynamics of AdS_3 Strings
We construct a general class of solutions for a classical string in AdS_3
spacetime. The construction is based on a Pohlmeyer type reduction, with the
sinh-Gordon model providing the general N-soliton solutions. The corresponding
exact spiky string configurations are then reconstructed through the inverse
scattering method. It is shown that the string moduli are determined entirely
by those of the solitons.Comment: 22 pages, no figures; references adde
- …