238 research outputs found

    Tetra­kis(μ-2-methyl­benzoato)bis­[(2-methyl­benzoic acid)copper(II)]

    Get PDF
    In the title centrosymmetric dinuclear compound, [Cu2(C8H7O2)4(C8H8O2)2], four o-toluate anions form a cage around two Cu atoms in a syn–syn configuration. Two more o-toluic acid mol­ecules are apically bonded to the Cu atoms, which show a square-pyramidal coordination geometry. The acid H atoms are hydrogen bonded to the cage carboxyl O atoms [O⋯O = 2.660 (2) Å]. The mol­ecular packing forms a puckered pseudo-hexa­gonal close-packed layer in the (h00) plane, with soft inter­molecular H⋯H contacts (2.46–2.58 Å)

    Tetra­kis(μ-4-ethyl­benzoato-κ2 O:O′)­bis­[(4-ethyl­benzoic acid-κO)copper(II)]

    Get PDF
    The molecule of the title compound, [Cu2(C9H9O2)4(C9H10O2)2], lies on a center of inversion. It consists of four bridging ethyl­benzoate ligands, forming a cage around two Cu atoms in a syn–syn configuration, and two monodentate ethyl­benzoic acid ligands bonded apically to the square-planar Cu atoms. The Cu⋯Cu distance is 2.6047 (5) Å

    Magnetic moments of the SU(3) decuplet baryons in the chiral quark-soliton model

    Get PDF
    Magnetic moments of baryons are studied within the chiral quark soliton model with special emphasis on the decuplet of baryons. The model is used to identify all symmetry breaking terms proportional to msm_{\rm s}. Sum rules for the magnetic moments are derived. A ``model-independent'' analysis of the symmetry breaking terms is performed and finally model calculations are presented, which show the importance of the rotational 1/Nc1/N_{\rm c} corrections for cranking of the soliton.Comment: 22 pages, RevTex. The final version accepted for publication in Phys. Rev.

    SU(3)_flavor analysis of two-body weak decays of charmed baryons

    Get PDF
    We study two-body weak decays of charmed baryons \Lambda_c and \Xi_c into an octet or decuplet baryon and a pseudoscalar meson employing the SU(3) flavor symmetry. Using certain measured Cabibbo-favored modes, we fix the reduced amplitudes and predict the branching ratios of various decays of charmed baryons in the Cabibbo-enhanced, -suppressed and -doubly suppressed modes.Comment: 25 pages, No figure, Phys. Rev. D (to appear

    Resonant Two-body D Decays

    Get PDF
    The contribution of a K(1430)K^*(1430) 0+0^+ resonance to D0Kπ+D^0\to K^-\pi^+ is calculated by applying the soft pion theorem to D+Kπ+D^+ \to K^* \pi^+, and is found to be about 30% of the measured amplitude and to be larger than the ΔI=3/2\Delta I=3/2 component of this amplitude. We estimate a 70% contribution to the total amplitude from a higher K(1950)K^*(1950) resonance. This implies large deviations from factorization in D decay amplitudes, a lifetime difference between D^0 and D^+, and an enhancement of D0Dˉ0D^0-\bar D^0 mixing due to SU(3) breaking.Comment: To be published in Physical Review Letters, some corrections, references update
    corecore