154 research outputs found
Competing phases in the high field phase diagram of (TMTSF)ClO
A model is presented for the high field phase diagram of (TMTSF)ClO,
taking into account the anion ordering, which splits the Fermi surface in two
bands. For strong enough field, the largest metal-SDW critical temperature
corresponds to the N=0 phase, which originates from two intraband nesting
processes. At lower temperature, the competition between these processes puts
at disadvantage the N=0 phase vs. the N=1 phase, which is due to interband
nesting. A first order transition takes then place from the N=0 to N=1 phase.
We ascribe to this effect the experimentally observed phase diagrams.Comment: 5 pages, 3 figures (to appear in Phys. Rev. Lett.
Field-induced confinement in (TMTSF)2ClO4 under accurately aligned magnetic fields
We present transport measurements along the least conducting c direction of
the organic superconductor (TMTSF)2ClO4, performed under an accurately aligned
magnetic field in the low temperature regime. The experimental results reveal a
two-dimensional confinement of the carriers in the (a,b) planes which is
governed by the magnetic field component along the b' direction. This 2-D
confinement is accompanied by a metal-insulator transition for the c axis
resistivity. These data are supported by a quantum mechanical calculation of
the transverse transport taking into account in self consistent treatment the
effect of the field on the interplane Green function and on the intraplane
scattering time
Renormalization of the hopping parameters in quasi-one-dimensional conductors in the presence of a magnetic field
Abstract. We consider the competition between the one dimensionalization effect due to a magnetic field and the hopping parameters in quasi-one-dimensional conductors. Our study is based on a perturbative renormalization group method with three cut-off parameters, the bandwidth E0, the 1D-2D crossover temperature T * 1 , which is related to the hopping process t1, and the magnetic energy ωc. We have found that the renormalized crossover temperatures T * 1 and T * 2 , at which the respectively hopping processes t1 and t2 become coherent, are reduced compared to the bare values as the field is increased. We discuss the consequences of these renormalization effects on the temperature-field phase diagram of the organic conductors. PAC
Multivariable control of a grid-connected wind energy conversion system with power quality enhancement
This document is the Accepted Manuscript version of the following article: Kaddour Fouad, Houari Merabet Boulouiha, Ahmed Allali, Ali Taibi, and Mouloud Denai, ‘Multivariable control of a grid-connected wind energy conversion system with power quality enhancement’, Energy Systems, Vol. 9 (1): 25-57, February 2018. The final publication is available at Springer via: https://doi.org/10.1007/s12667-016-0223-7This paper proposes the design of a multivariable robust control strategy for a variable-speed WECS based on a SCIG. Optimal speed control of the SCIG is achieved by a conventional PI controller combined with a MPPT strategy. DTC-SVM technique based on a simple Clarke transformation is used to control the generator-side three-level converter in the variable speed WECS. The flow of real and reactive power between the inverter and the grid is controlled via the grid real and reactive currents and the DC link voltage using multivariable H∞ control. The overall WECS and control scheme are developed in Matlab/Simulink and the performance of the proposed control strategy is evaluated via a set of simulation scenarios replicating various operating conditions of the WECS such as variable wind speed and asymmetric single grid faults. The power quality of the WECS system under H∞ control control approach is assessed and the results show a significant improvement in the total harmonic distorsion as compared to that achieved with a classical PI control.Peer reviewedFinal Accepted Versio
MISTRAL observations of the C/2022 E3 (ZTF) comet by the Aix-Marseille M2 students: first science results
After the upgrade of the Narval instrument at TBL to NeoNarval, concerns have been raised regarding the quality of results in polarimetry and precision in velocimetry. Investigations into the topic have hinted at both instrumental and software issues that must be resolved in order to accurately exploit the data. We present our discoveries of issues and subsequent work performed to improve the reduction of NeoNarval data. We aim to provide comparisons between the DRS and a pipeline utilised for similar instruments, as well as initial attempts to implement new methods. PyReduce, an open-source reduction pipeline for echelle spectrographs, has modules already designed for a variety of currently-used instruments as well as initialisation of a number of options allowing for the evolution and expansion of its functions, which is of great benefit for integrating the specifics of the NeoNarval instrument
Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential
<p>Abstract</p> <p>Background</p> <p>Chemoprevention, which includes the use of synthetic or natural agents (alone or in combination) to block the development of cancer in human beings, is an extremely promising strategy for cancer prevention. Cinnamon is one of the most widely used herbal medicines with diverse biological activities including anti-tumor activity. In the present study, we have reported the anti-neoplastic activity of cinnamon in cervical cancer cell line, SiHa.</p> <p>Methods</p> <p>The aqueous cinnamon extract (ACE-<it>c</it>) was analyzed for its cinnamaldehyde content by HPTLC analysis. The polyphenol content of ACE-<it>c </it>was measured by Folin-Ciocalteau method. Cytotoxicity analysis was performed by MTT assay. We studied the effect of cinnamon on growth kinetics by performing growth curve, colony formation and soft agar assays. The cells treated with ACE-<it>c </it>were analyzed for wound healing assay as well as for matrix metalloproteinase-2 (MMP-2) expression at mRNA and protein level by RT-PCR and zymography, respectively. Her-2 protein expression was analyzed in the control and ACE-<it>c </it>treated samples by immunoblotting as well as confocal microscopy. Apoptosis studies and calcium signaling assays were analyzed by FACS. Loss of mitochondrial membrane potential (Δψ<sub>m</sub>) in cinnamon treated cells was studied by JC-1 staining and analyzed by confocal microscopy as well as FACS.</p> <p>Results</p> <p>Cinnamon alters the growth kinetics of SiHa cells in a dose-dependent manner. Cells treated with ACE-<it>c </it>exhibited reduced number of colonies compared to the control cells. The treated cells exhibited reduced migration potential that could be explained due to downregulation of MMP-2 expression. Interestingly, the expression of Her-2 oncoprotein was significantly reduced in the presence of ACE-<it>c</it>. Cinnamon extract induced apoptosis in the cervical cancer cells through increase in intracellular calcium signaling as well as loss of mitochondrial membrane potential.</p> <p>Conclusion</p> <p>Cinnamon could be used as a potent chemopreventive drug in cervical cancer.</p
Targeting Cattle-Borne Zoonoses and Cattle Pathogens Using a Novel Trypanosomatid-Based Delivery System
Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum) theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis
- …