4 research outputs found
Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases
Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents
Lipopeptide secondary metabolites from the phytopathogenic bacterium Pseudomonas syringae.
Over the past twenty years or so, significant advances have been made in the study of the secondary metabolism of the widespread phytopathogenic Gram-negative bacterium Pseudomonas syringae. Interdisciplinary approach, which required the expertise of plant pathologists, chemists, biochemists and molecular biologists, led to the discovery of a new family of bioactive peptide secondary metabolites. The determination of their structures was pivotal for the investigations on their biosynthetic pathways, their relevance in the development of plant disease, and for the understanding of the molecular bases of their biological activities in plant, microbial and animal cells. In particular, the antibiotic activities of some of these compounds appear very interesting in the perspective of their utilization both in medicine and in agriculture. The goal of this chapter is to summarize the present knowledge in various areas of research on P. syringae peptide metabolites