140 research outputs found

    Transforming growth factor-Ξ² and breast cancer: Lessons learned from genetically altered mouse models

    Get PDF
    Transforming growth factor (TGF)-Ξ²s are plausible candidate tumor suppressors in the breast. They also have oncogenic activities under certain circumstances, however. Genetically altered mouse models provide powerful tools to analyze the complexities of TGF-Ξ²action in the context of the whole animal. Overexpression of TGF-Ξ² can suppress tumorigenesis in the mammary gland, raising the possibility that use of pharmacologic agents to enhance TGF-Ξ² function locally might be an effective method for the chemoprevention of breast cancer. Conversely, loss of TGF-Ξ² response increases spontaneous and induced tumorigenesis in the mammary gland. This confirms that endogenous TGF-Ξ²s have tumor suppressor activity in the mammary gland, and suggests that the loss of TGF-Ξ² receptors seen in some human breast hyperplasias may play a causal role in tumor development

    Malignant melanoma arising from a perianal fistula and harbouring a BRAF gene mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma of the anal region is a very uncommon disease, accounting for only 0.2-0.3% of all melanoma cases. Mutations of the <it>BRAF </it>gene are usually absent in melanomas occurring in this region as well as in other sun-protected regions. The development of a tumour in a longstanding perianal fistula is also extremely rare. More frequent is the case of a tumour presenting as a fistula, that is, the fistula being a consequence of the cancerous process, although we have found only two cases of fistula-generating melanomas reported in the literature.</p> <p>Case Presentation</p> <p>Here we report the case of a 38-year-old male who presented with a perianal fistula of four years of evolution. Histopathological examination of the fistulous tract confirmed the presence of malignant melanoma. Due to the small size and the central location of the melanoma inside the fistulous tract, we believe the melanoma reported here developed in the epithelium of the fistula once the latter was already formed. Resected sentinel lymph nodes were negative and the patient, after going through a wide local excision, remains disease-free nine years after diagnosis. DNA obtained from melanoma tissue was analysed by automated direct sequencing and the <it>V600E </it>(<it>T1799A</it>) mutation was detected in exon 15 of the <it>BRAF </it>gene.</p> <p>Conclusion</p> <p>Since fistulae experience persistent inflammation, the fact that this melanoma harbours a <it>BRAF </it>mutation strengthens the view that oxidative stress caused by inflammatory processes plays an important role in the genesis of <it>BRAF </it>gene mutations.</p

    Identification of Novel Targets of CSL-Dependent Notch Signaling in Hematopoiesis

    Get PDF
    Somatic activating mutations in the Notch1 receptor result in the overexpression of activated Notch1, which can be tumorigenic. The goal of this study is to understand the molecular mechanisms underlying the phenotypic changes caused by the overexpression of ligand independent Notch 1 by using a tetracycline inducible promoter in an in vitro embryonic stem (ES) cells/OP9 stromal cells coculture system, recapitulating normal hematopoiesis. First, an in silico analysis of the promoters of Notch regulated genes (previously determined by microarray analysis) revealed that the motifs recognized by regulatory proteins known to mediate hematopoiesis were overrepresented. Notch 1 does not bind DNA but instead binds the CSL transcription factor to regulate gene expression. The in silico analysis also showed that there were putative CSL binding sites observed in the promoters of 28 out of 148 genes. A custom ChIP-chip array was used to assess the occupancy of CSL in the promoter regions of the Notch1 regulated genes in vivo and showed that 61 genes were bound by activated Notch responsive CSL. Then, comprehensive mapping of the CSL binding sites genome-wide using ChIP-seq analysis revealed that over 10,000 genes were bound within 10 kb of the TSS (transcription start site). The majority of the targets discovered by ChIP-seq belong to pathways that have been shown by others to crosstalk with Notch signaling. Finally, 83 miRNAs were significantly differentially expressed by greater than 1.5-fold during the course of in vitro hematopoiesis. Thirty one miRNA were up-regulated and fifty two were down-regulated. Overexpression of Notch1 altered this pattern of expression of microRNA: six miRNAs were up-regulated and four were down regulated as a result of activated Notch1 overexpression during the course of hematopoiesis. Time course analysis of hematopoietic development revealed that cells with Notch 1 overexpression mimic miRNA expression of cells in a less mature stage, which is consistent with our previous biological characterization
    • …
    corecore