2,336 research outputs found

    Mechanical properties of polycrystalline graphene based on a realistic atomistic model

    Full text link
    Graphene can at present be grown at large quantities only by the chemical vapor deposition method, which produces polycrystalline samples. Here, we describe a method for constructing realistic polycrystalline graphene samples for atomistic simulations, and apply it for studying their mechanical properties. We show that cracks initiate at points where grain boundaries meet and then propagate through grains predominantly in zigzag or armchair directions, in agreement with recent experimental work. Contrary to earlier theoretical predictions, we observe normally distributed intrinsic strength (~ 50% of that of the mono-crystalline graphene) and failure strain which do not depend on the misorientation angles between the grains. Extrapolating for grain sizes above 15 nm results in a failure strain of ~ 0.09 and a Young's modulus of ~ 600 GPa. The decreased strength can be adequately explained with a conventional continuum model when the grain boundary meeting points are identified as Griffith cracks.Comment: Accepted for Physical Review B; 5 pages, 4 figure

    On the use of non-canonical quantum statistics

    Full text link
    We develop a method using a coarse graining of the energy fluctuations of an equilibrium quantum system which produces simple parameterizations for the behaviour of the system. As an application, we use these methods to gain more understanding on the standard Boltzmann-Gibbs statistics and on the recently developed Tsallis statistics. We conclude on a discussion of the role of entropy and the maximum entropy principle in thermodynamics.Comment: 29 pages, uses iopart.cls, major revisions of text for better readability, added a discussion about essentially microcanonical ensemble

    Uranium leaching from contaminated soil utilizing rhamnolipid, EDTA, and citric acid

    Get PDF
    Biosurfactants have recently gained attention as "green" agents that can be used to enhance the remediation of heavy metals and some organic matter in contaminated soils. The overall objective of this paper was to investigate rhamnolipid, a microbial produced biosurfactant, and its ability to leach uranium present in contaminated soil from an abandoned mine site. Soil samples were collected from two locations in northern Arizona: Cameron (site of open pit mining) and Leupp (control-no mining). The approach taken was to first determine the total uranium content in each soil using a hydrofluoric acid digestion, then comparing the amount of metal removed by rhamnolipid to other chelating agents EDTA and citric acid, and finally determining the amount of soluble metal in the soil matrix using a sequential extraction. Results suggested a complex system for metal removal from soil utilizing rhamnolipid. It was determined that rhamnolipid at a concentration of 150 mu M was as effective as EDTA but not as effective as citric acid for the removal of soluble uranium. However, the rhamnolipid was only slightly better at removing uranium from the mining soil compared to a purified water control. Overall, this study demonstrated that rhamnolipid ability to remove uranium from contaminated soil is comparable to EDTA and to a lesser extent citric acid, but, for the soils investigated, it is not significantly better than a simple water wash

    Traditional Ecological Knowledge Policy Considerations for Abandoned Uranium Mines on Navajo Nation

    Get PDF
    Environmental justice is a prominent issue for Native American Nations within the United States. One example is the abandoned uranium mines on the Navajo Nation that were left unremediated since the Cold War. Often, environmental policy is developed for issues facing Native American Nations that do not include input from those Nations. Instead, Native American Nations should have the opportunity to address environmental issues using their traditional ecological knowledge (TEK). TEK has ties to natural laws long respected by tribal communities; these laws provide the foundation for addressing the complex relationship between nature and humans. Often, policy development addressing environmental concerns is determined by non-Native American stakeholders, which can have negative effects on the Native American communities. These policies harm Native Americans rather than ultimately helping them. The focus of this discussion is how TEK can play a role in environmental policy development for the Navajo Nation surrounding abandoned uranium mines
    • …
    corecore