1,756 research outputs found
Realization of Minimal Supergravity
Minimal supergravity mediation of supersymmetry breaking has attracted much
attention due to its simplicity, which leads to its predictive power. We
consider how Nature possibly realizes minimal supergravity through inflationary
selection of the theory. Minimality is impressively consistent with the present
observational bounds and it might be tested with the aid of low-energy soft
parameters obtained in future experiments.Comment: 18 pages, 5 figure
The Lorenz number in CeCoIn inferred from the thermal and charge Hall currents
The thermal Hall conductivity and Hall conductivity
in CeCoIn are used to determine the Lorenz number at low temperature . This enables the separation of the observed
thermal conductivity into its electronic and non-electronic parts. We uncover
evidence for a charge-neutral, field-dependent thermal conductivity, which we
identify with spin excitations. At low , these excitations dominate the
scattering of charge carriers. We show that suppression of the spin excitations
in high fields leads to a steep enhancement of the electron mean-free-path,
which leads to an interesting scaling relation between the magnetoresistance,
thermal conductivity and .Comment: 6 pages, 7 figures Intro para slightly lengthened. Added 2 new re
Enhanced quasiparticle heat conduction of the multigap superconductor Lu2Fe3Si5
The thermal transport measurements have been made on the Fe-based
superconductor Lu2Fe3Si5 (Tc ~ 6 K) down to a very low temperature Tc/120. The
field and temperature dependences of the thermal conductivity confirm the
multigap superconductivity with fully opened gaps on the whole Fermi surfaces.
In comparison to MgB2 as a typical example of the multigap superconductor in a
p-electron system, Lu2Fe3Si5 reveals a remarkably enhanced quasiparticle heat
conduction in the mixed state. The results can be interpreted as a consequence
of the electronic correlations derived from Fe 3d-electrons.Comment: 5 pages, 4 figure
Algebroid Yang-Mills Theories
A framework for constructing new kinds of gauge theories is suggested.
Essentially it consists in replacing Lie algebras by Lie or Courant algebroids.
Besides presenting novel topological theories defined in arbitrary spacetime
dimensions, we show that equipping Lie algebroids E with a fiber metric having
sufficiently many E-Killing vectors leads to an astonishingly mild deformation
of ordinary Yang-Mills theories: Additional fields turn out to carry no
propagating modes. Instead they serve as moduli parameters gluing together in
part different Yang-Mills theories. This leads to a symmetry enhancement at
critical points of these fields, as is also typical for String effective field
theories.Comment: 4 pages; v3: Minor rewording of v1, version to appear in Phys. Rev.
Let
Anomalous thermopower and Nernst effect in : entropy-current loss in precursor state
The heavy-electron superconductor CeCoIn exhibits a puzzling precursor
state above its superconducting critical temperature at = 2.3 K. The
thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of
the electrons undergoes a steep decrease reaching 0 at .
Concurrently, the off-diagonal thermoelectric current is
enhanced. The delicate sensitivity of the zero-entropy state to field implies
phase coherence over large distances. The prominent anomalies in the
thermoelectric current contrast with the relatively weak effects in the
resistivity and magnetization.Comment: 5 figures, 4 page
Angular Position of Nodes in the Superconducting Gap of Quasi-2D Heavy-Fermion Superconductor CeCoIn_5
The thermal conductivity of the heavy-fermion superconductor CeCoIn_5 has
been studied in a magnetic field rotating within the 2D planes. A clear
fourfold symmetry of the thermal conductivity which is characteristic of a
superconducting gap with nodes along the (+-pi,+-pi)-directions is resolved.
The thermal conductivity measurement also reveals a first order transition at
H_c2, indicating a Pauli limited superconducting state. These results indicate
that the symmetry most likely belongs to d_{x^2-y^2}, implying that the
anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.Comment: 5 Pages, 4 figure
Thermoelectric response near a quantum critical point of beta-YbAlB4 and YbRh2Si2: A comparative study
The thermoelectric coefficients have been measured on the Yb-based heavy
fermion compounds beta-YbAlB4 and YbRh2Si2 down to a very low temperature. We
observe a striking difference in the behavior of the Seebeck coefficient, S in
the vicinity of the Quantum Critical Point (QCP) in the two systems. As the
critical field is approached, S/T enhances in beta-YbAlB4 but is drastically
reduced in YbRh2Si2. While in the former system, the ratio of
thermopower-to-specific heat remains constant, it drastically drops near the
QCP in YbRh2Si2. In both systems, on the other hand, the Nernst coefficient
shows a diverging behavior near the QCP. The results provide a new window to
the way various energy scales of the system behave and eventually vanish near a
QCP
Directional tunnelling spectroscopy of a normal metal--wave superconductor junction
We calculate the normal metal--wave superconductor tunnelling spectrum
for various junction orientations and for two forms of the superconducting gap,
one which allows for point nodes and the other which allows for line nodes. For
a junction oriented with its normal parallel to the ab plane of the tetragonal
superconductor, we find that the tunnelling spectrum is strongly dependent on
orientation in the plane. The spectrum contains two peaks at energies
equivalent to the magnitudes of the gap function in the direction parallel to
the interface normal and in the direction making a angle with the
normal. These two peaks appear in both superconductors with point nodes and
line nodes, but are more prominent in the latter. For the tunnelling along the
c axis, we find a sharp peak at the gap maximum in the conductance spectrum of
the superconductor with line nodes, whereas with point nodes we find a peak
occurring at the value of the gap function along the c axis. We discuss the
relevance of our result to borocarbide systems.Comment: 16 pages, 10 figure
Influence of gap structures to specific heat in oriented magnetic fields: Application to the orbital dependent superconductor, SrRuO
We discuss influence of modulation of gap function and anisotropy of Fermi
velocity to field angle dependences of upper critical field, , and
specific heat, , on the basis of the approximate analytic solution in the
quasiclassical formalism. Using 4-fold modulation of the gap function and the
Fermi velocity in the single-band model, we demonstrate field and temperature
dependence of oscillatory amplitude of and . We apply the method to
the effective two-band model to discuss the gap structure of SrRuO,
focusing on recent field angle-resolved experiments. It is shown that the gap
structures with the intermediate magnitude of minima in direction for
band, and tiny minima of gaps in directions for and
bands give consistent behaviors with experiments. The interplay of the
above two gaps also explains the anomalous temperature dependence of in-plane
anisotropy, where the opposite contribution from the passive
band is pronounced near .Comment: 7 pages, 11 figures in JPSJ forma
- …