32 research outputs found

    Deriving Analytical Expressions for the Ideal Curves and Using the Curves to Obtain the Temperature Dependence of Equation-of-State Parameters Analytical Expressions for Ideal Curves 1565

    No full text
    Different equations of state (EOSs) have been used to obtain analytical expressions for the ideal curves, namely, the Joule-Thomson inversion curve (JTIC), Boyle curve (BC), and Joule inversion curve (JIC). The selected EOSs are the Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), Deiters, linear isotherm regularity (LIR), modified LIR (MLIR), dense system equation of state (DSEOS), and van der Waals (vdW). Analytical expressions have been obtained for the JTIC and BC only by using the LIR, MLIR, and vdW equations of state. The expression obtained using the LIR is the simplest. The experimental data for the JTIC and the calculated points from the empirical EOSs for the BC are well fitted into the derived expression from the LIR, in such a way that the fitting on this expression is better than those on the empirical expressions given by Gunn et al. and Miller. No experimental data have been reported for the BC and JIC; therefore, the calculated curves from different EOSs have been compared with those calculated from the empirical equations. On the basis of the JTIC, an approach is given for obtaining the temperature dependence of an EOS parameter(s). Such an approach has been used to determine the temperature dependences of A 2 of the LIR, a and b parameters of the vdW, and the cohesion function of the RK. Such temperature dependences, obtained on the basis of the JTIC, have been found to be appropriate for other ideal curves as well

    Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.)under water-limited environments

    No full text
    In the water-limited bread wheat production environment of southern Australia, large advances in grain yield have previously been achieved through the introduction and improved understanding of agronomic traits controlled by major genes, such as the semi-dwarf plant stature and photoperiod insensitivity. However, more recent yield increases have been achieved through incremental genetic advances, of which, breeders and researchers do not fully understand the underlying mechanism(s). A doubled haploid population was utilised, derived from a cross between RAC875, a relatively drought-tolerant breeders’ line and Kukri, a locally adapted variety more intolerant of drought. Experiments were performed in 16 environments over four seasons in southern Australia, to physiologically dissect grain yield and to detect quantitative trait loci (QTL) for these traits. Two stage multi-environment trial analysis identified three main clusters of experiments (forming distinctive environments, ENVs), each with a distinctive growing season rainfall patterns. Kernels per square metre were positively correlated with grain yield and influenced by kernels per spikelet, a measure of fertility. QTL analysis detected nine loci for grain yield across these ENVs, individually accounting for between 3 and 18% of genetic variance within their respective ENVs, with the RAC875 allele conferring increased grain yield at seven of these loci. These loci were partially dissected by the detection of colocated QTL for other traits, namely kernels per square metre. While most loci for grain yield have previously been reported, their deployment and effect within local germplasm are now better understood. A number of novel loci can be further exploited to aid breeders’ efforts in improving grain yield in the southern Australian environment.Dion Bennett, Ali Izanloo, Matthew Reynolds, Haydn Kuchel, Peter Langridge and Thorsten Schnurbusc

    Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions

    No full text
    In southern Australia, where the climate is predominantly Mediterranean, achieving the correct flowering time in bread wheat minimizes the impact of in-season cyclical and terminal drought. Flag leaf glaucousness has been hypothesized as an important component of drought tolerance but its value and genetic basis in locally adapted germplasm is unknown. From a cross between Kukri and RAC875, a doubled-haploid (DH) population was developed. A genetic linkage map consisting of 456 DArT and SSR markers was used to detect QTL affecting time to ear emergence and Zadoks growth score in seven field experiments. While ear emergence time was similar between the parents, there was significant transgressive segregation in the population. This was the result of segregation for the previously characterized Ppd-D1a and Ppd-B1 photoperiod responsive alleles. QTL of smaller effect were also detected on chromosomes 1A, 4A, 4B, 5A, 5B, 7A and 7B. A novel QTL for flag leaf glaucousness of large, repeatable effect was detected in six field experiments, on chromosome 3A (QW.aww-3A) and accounted for up to 52 percent of genetic variance for this trait. QW.aww-3A was validated under glasshouse conditions in a recombinant inbred line population from the same cross. The genetic basis of time to ear emergence in this population will aid breeders' understanding of phenological adaptation to the local environment. Novel loci identified for flag leaf glaucousness and the wide phenotypic variation within the DH population offers considerable scope to investigate the impact and value of this trait for bread wheat production in southern Australia.Dion Bennett, Ali Izanloo, James Edwards, Haydn Kuchel, Ken Chalmers, Mark Tester, Matthew Reynolds, Thorsten Schnurbusch, Peter Langridg

    Equilibrium, Kinetics, and Thermodynamics of Methylene Blue Adsorption by Pine Tree Leaves

    No full text
    The adsorption capacity of pine tree leaves for removal of methylene blue (MB) from aqueous solution was investigated in a batch system. The effects of the process variables, such as solution pH, contact time, initial dye concentration, amount of adsorbent, agitation speed, salt concentration, and system temperature on the adsorption process were studied. The extent of methylene blue dye adsorption increased with increase in initial dye concentration, contact time, agitation speed, temperature, and solution pH but decreased with increased in amount of adsorbent and salt concentration. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity of pine tree leaves biomass was 126.58 mg/g at 30°C. The value of separation factor, R L , from Langmuir equation and Freundlich constant, n, both give an indication of favorable adsorption. The intrapartical diffusion model, liquid film diffusion model, double exponential model, pseudo-first and second order model were used to describe the kinetic and mechanism of adsorption process. A single stage bath adsorber design for the MB adsorption onto pine tree leaves has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters such as standard Gibbs free energy (ΔG 0), standard enthalpy (ΔH 0), and standard entropy (ΔS 0) were calculated
    corecore