973 research outputs found

    Experimental evidence for the breakdown of a Hartree-Fock approach in a weakly interacting Bose gas

    Get PDF
    We study the formation of a quasi-condensate in a nearly one dimensional, weakly interacting trapped atomic Bose gas. We show that a Hartree Fock (mean-field) approach fails to explain the presence of the quasi-condensate in the center of the cloud: the quasi-condensate appears through an interaction-driven cross-over and not a saturation of the excited states. Numerical calculations based on Bogoliubov theory give an estimate of the cross-over density in agreement with experimental results.Comment: submitted to Phys. Rev. Letter

    Bose-Einstein condensation of metastable helium: some experimental aspects

    Full text link
    We describe our recent realization of BEC using metastable helium. All detection is done with a micruchannel plate which detects the metastables or ions coming from the trapped atom cloud. This discussion emphasizes some of the diagnostic experiments which were necessary to quantitatively analyse our results.Comment: 5 pages, 3 figure

    Hanbury Brown and Twiss correlations in atoms scattered from colliding condensates

    Full text link
    Low energy elastic scattering between clouds of Bose condensed atoms leads to the well known s-wave halo with atoms emerging in all directions from the collision zone. In this paper we discuss the emergence of Hanbury Brown and Twiss coincidences between atoms scattered in nearly parallel directions. We develop a simple model that explains the observations in terms of an interference involving two pairs of atoms each associated with the elementary s wave scattering process.Comment: Minor corrections. reference update

    Effect of trap symmetry and atom-atom interactions on a trapped atom interferometer with internal state labelling

    Full text link
    In this paper, we study the dynamics of a trapped atom interferometer with internal state labelling in the presence of interactions. We consider two situations: an atomic clock in which the internal states remain superposed, and an inertial sensor configuration in which they are separated. From the average spin evolution, we deduce the fringe contrast and the phase-shift. In the clock configuration, we recover the well-known identical spin rotation effect (ISRE) which can significantly increase the spin coherence time. We also find that the magnitude of the effect depends on the trap geometry in a way that is consistent with our recent experimental results in a clock configuration [M. Dupont-Nivet, and al., New J. Phys., 20, 043051 (2018)], where ISRE was not observed. In the case of an inertial sensor, we show that despite the spatial separation it is still possible to increase the coherence time by using mean field interactions to counteract asymmetries of the trapping potential.Comment: 18 pages, 5 figure

    Hanbury Brown Twiss effect for ultracold quantum gases

    Full text link
    We have studied 2-body correlations of atoms in an expanding cloud above and below the Bose-Einstein condensation threshold. The observed correlation function for a thermal cloud shows a bunching behavior, while the correlation is flat for a coherent sample. These quantum correlations are the atomic analogue of the Hanbury Brown Twiss effect. We observe the effect in three dimensions and study its dependence on cloud size.Comment: Figure 1 availabl

    Fast production of Bose-Einstein condensates of metastable Helium

    Full text link
    We report on the Bose-Einstein condensation of metastable Helium-4 atoms using a hybrid approach, consisting of a magnetic quadrupole and a crossed optical dipole trap. In our setup we cross the phase transition with 2x10^6 atoms, and we obtain pure condensates of 5x10^5 atoms in the optical trap. This novel approach to cooling Helium-4 provides enhanced cycle stability, large optical access to the atoms and results in production of a condensate every 6 seconds - a factor 3 faster than the state-of-the-art. This speed-up will dramatically reduce the data acquisition time needed for the measurement of many particle correlations, made possible by the ability of metastable Helium to be detected individually

    Thermal counting statistics in an atomic two-mode squeezed vacuum state

    Full text link
    We measure the population distribution in one of the atomic twin beams generated by four-wave mixing in an optical lattice. Although the produced two-mode squeezed vacuum state is pure, each individual mode is described as a statistical mixture. We confirm the prediction that the particle number follows an exponential distribution when only one spatio-temporal mode is selected. We also show that this distribution accounts well for the contrast of an atomic Hong--Ou--Mandel experiment. These experiments constitute an important validation of our twin beam source in view of a future test of a Bell inequalities.Comment: SciPost submissio
    corecore