95 research outputs found
Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology
Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis.
Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain.
Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone.
Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes
Ensayos para refinación física de la manteca de karité
Assays for physical refining of shea butter.
The best conditions for the refining of shea butter used-in cosmetic industries are defined. The objective is to obtain a bleached, deodorized fat, with a 3% maximum free acidity and a high amount of unsaponifiable matter having minimal losses with respect to the initial sample.
The following variables have been studied: phosphoric acid proportion in degumming, bleaching clays and active carbon percentages in bleaching, and temperature/time in the stage of deodorization.
The results demonstrate that good quality shea butter can be obtained by physical refining if the level of free fatty acid in the initial sample is lower than 5%. Otherwise, a neutralization is necessary, which should be partial in order to reduce the loss of unsaponifiable matter.Se estudian las condiciones más adecuadas en la refinación de la manteca de karité para su uso en cosmética. El objetivo es conseguir un producto decolorado, desodorizado con acidez libre inferior al 3% e insaponificable elevado, con pérdidas mínimas sobre el existente en la muestra inicial.
Se han estudiado las siguientes variables: proporción de ácido fosfórico en la fase de desgomado, cantidad de tierras decolorantes y carbón activo en la decoloración y temperatura/tiempo en la desodorización. Los resultados demuestran que puede obtenerse una grasa de buena calidad mediante refinación física cuando las muestras contienen menos de un 5% de acidez. En caso contrario es necesario una neutralización previa que debe ser parcial para disminuir al mínimo las pérdidas de compuestos del insaponificable
Moderate exercise protects against joint disease in a murine model of osteoarthritis
Exercise is recommended as a non-pharmacological therapy for osteoarthritis (OA). Various exercise regimes, with differing intensities and duration, have been used in a range of OA rodent models. These studies show gentle or moderate exercise reduces the severity of OA parameters while high intensity load bearing exercise is detrimental. However, these studies were largely conducted in rats or in mouse models induced by severe injury, age or obesity, whilst destabilization of the medial meniscus (DMM) in mice has become a widely accepted model due to its lower variability, moderate progression and timescale. The present study was undertaken to provide insight into the effect of moderate exercise on early joint pathology in the DMM mouse model. Exercise was induced a week after induction by forced wheel walking for three or 7 weeks. Joints were analyzed by microcomputed tomography and histology. Assessment of skeletal parameters revealed that exercise offered protection against cartilage damage after 7 weeks of exercise, and a temporary protection against osteosclerosis was displayed after 3 weeks of exercise. Furthermore, exercise modified the metaphyseal trabecular microarchitecture of the osteoarthritic leg in both time points examined. Collectively, our findings corroborate previous studies showing that exercise has an important effect on bone in OA, which subsequently, at 8 weeks post-induction, translates into less cartilage damage. Thus, providing an exercise protocol in a surgical mouse model of OA, which can be used in the future to further dissect the mechanisms by which moderate exercise ameliorates OA
The IĸB protein BCL3 controls osteogenesis and bone health.
OBJECTIVE: IĸB protein B-cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signalling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance and osteoarthritic pathology. METHODS: To assess the contribution of BCL3 to skeletal homeostasis, neonatal mice (n = 6-14) lacking BCL3 (Bcl3-/- ) and WT controls were characterised for bone phenotype and density. To reveal the contribution to bone phenotype by the osteoblast compartment in Bcl3-/- mice, transcriptomic analysis of early osteogenic differentiation and cellular function (n = 3-7) were assessed. Osteoclast differentiation and function in Bcl3-/- mice (n = 3-5) was assessed. Adult 20-week Bcl3-/- and WT mice bone phenotype, strength and turnover were assessed. A destabilisation of the medial meniscus (DMM) model of osteoarthritic ostephytogenesis was utilised to understand adult bone formation in Bcl3-/- mice (n = 11-13). RESULTS: Evaluation of Bcl3-/- mice revealed congenitally increased bone density, long bone dwarfism, increased bone biomechanical strength and altered bone turnover. Molecular and cellular characterisation of mesenchymal precursors showed that Bcl3-/- cells display an accelerated osteogenic transcriptional profile that leads to enhanced differentiation into osteoblasts with increased functional activity; which could be reversed with a mimetic peptide. In a model of osteoarthritis-induced osteophytogenesis, Bcl3-/- mice exhibit decreased pathological osteophyte formation (P < 0.05). CONCLUSION: Cumulatively, these findings demonstrate that BCL3 controls developmental mineralisation to enable appropriate bone formation, whilst in a pathological setting it contributes to skeletal pathology
Commissioning of a synchrotron-based proton beam therapy system for use with a Monte Carlo treatment planning system
This work tackles the commissioning and validation of a novel combination of a synchrotron-based proton beam
therapy system (Hitachi, Ltd.) for use with a Monte Carlo treatment planning system (TPS). Four crucial aspects
in this configuration have been investigated: (1) Monte Carlo-based correction performed by the TPS to the
measured integrated depth-dose curves (IDD), (2) circular spot modelling with a single Gaussian function to
characterize the synchrotron physical spot, which is elliptical, (3) the modelling of the range shifter that enables
using only one set of measurements in open beams, and (4) the Monte Carlo dose calculation model in small
fields.
Integrated depth-dose curves were measured with a PTW Bragg peak chamber and corrected, with a Monte
Carlo model, to account for energy absorbed outside the detector. The elliptical spot was measured by IBA Lynx
scintillator, EBT3 films and PTW microDiamond. The accuracy of the TPS (RayStation, RaySearch Laboratories)
at spot modelling with a circular Gaussian function was assessed.
The beam model was validated using spread-out Bragg peak (SOBP) fields. We took single-point doses at
several depths through the central axis using a PTW Farmer chamber, for fields between 2 × 2cm and 30 × 30cm.
We checked the range-shifter modelling from open-beam data. We tested clinical cases with film and an ioni-
zation chamber array (IBA Matrix).
Sigma differences for spots fitted using 2D images and 1D profiles to elliptical and circular Gaussian models
were below 0.22 mm. Differences between SOBP measurements at single points and TPS calculations for all fields
between 5 × 5 and 30 × 30cm were below 2.3%. Smaller fields had larger differences: up to 3.8% in the 2 × 2cm
field. Mean differences at several depths along the central axis were generally below 1%. Differences in range-
shifter doses were below 2.4%. Gamma test (3%, 3 mm) results for clinical cases were generally above 95% for
Matrix and film.
Approaches for modelling synchrotron proton beams have been validated. Dose values for open and range-
shifter fields demonstrate accurate Monte Carlo correction for IDDs. Elliptical spots can be successfully
modelled using a circular Gaussian, which is accurate for patient calculations and can be used for small fields. A
double-Gaussian spot can improve small-field calculations. The range-shifter modelling approach, which reduces
clinical commissioning time, is adequat
Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum
Background: Perivascular spaces (PVS) have an important role in the elimination of metabolic waste from the brain. It has been hypothesized that the enlargement of PVS (ePVS) could be affected by pathophysiological mechanisms involved in Alzheimer’s disease (AD), such as abnormal levels of CSF biomarkers. However, the relationship between ePVS and these pathophysiological mechanisms remains unknown.
Objective: We aimed to investigate the association between ePVS and CSF biomarkers of several pathophysiological mechanisms for AD. We hypothesized that ePVS will be associated to CSF biomarkers early in the AD continuum (i.e., amyloid positive cognitively unimpaired individuals). Besides, we explored associations between ePVS and demographic and cardiovascular risk factors.
Methods: The study included 322 middle-aged cognitively unimpaired participants from the ALFA + study, many within the Alzheimer’s continuum. NeuroToolKit and Elecsys® immunoassays were used to measure CSF Aβ42, Aβ40, p-tau and t-tau, NfL, neurogranin, TREM2, YKL40, GFAP, IL6, S100, and α-synuclein. PVS in the basal ganglia (BG) and centrum semiovale (CS) were assessed based on a validated 4-point visual rating scale. Odds ratios were calculated for associations of cardiovascular and AD risk factors with ePVS using logistic and multinomial models adjusted for relevant confounders. Models were stratified by Aβ status (positivity defined as Aβ42/40 < 0.071).
Results: The degree of PVS significantly increased with age in both, BG and CS regions independently of cardiovascular risk factors. Higher levels of p-tau, t-tau, and neurogranin were significantly associated with ePVS in the CS of Aβ positive individuals, after accounting for relevant confounders. No associations were detected in the BG neither in Aβ negative participants.
Conclusions: Our results support that ePVS in the CS are specifically associated with tau pathophysiology, neurodegeneration, and synaptic dysfunction in asymptomatic stages of the Alzheimer’s continuum
Developing and investigating a nanovibration intervention for the prevention/reversal of bone loss following spinal cord injury
Osteoporosis disrupts the fine-tuned balance between bone formation and resorption, leading to reductions in bone quantity and quality and ultimately increasing fracture risk. Prevention and treatment of osteoporotic fractures is essential for reductions in mortality, morbidity, and the economic burden, particularly considering the aging global population. Extreme bone loss that mimics time-accelerated osteoporosis develops in the paralyzed limbs following complete spinal cord injury (SCI). In vitro nanoscale vibration (1 kHz, 30 or 90 nm amplitude) has been shown to drive differentiation of mesenchymal stem cells toward osteoblast-like phenotypes, enhancing osteogenesis and inhibiting osteoclastogenesis simultaneously. Here, we develop and characterize a wearable device designed to deliver and monitor continuous nanoamplitude vibration to the hindlimb long bones of rats with complete SCI. We investigate whether a clinically feasible dose of nanovibration (two 2 h/day, 5 days/week for 6 weeks) is effective at reversing the established SCI-induced osteoporosis. Laser interferometry and finite element analysis confirmed transmission of nanovibration into the bone, and microcomputed tomography and serum bone formation and resorption markers assessed effectiveness. The intervention did not reverse SCI-induced osteoporosis. However, serum analysis indicated an elevated concentration of the bone formation marker procollagen type 1 N-terminal propeptide (P1NP) in rats receiving 40 nm amplitude nanovibration, suggesting increased synthesis of type 1 collagen, the major organic component of bone. Therefore, enhanced doses of nanovibrational stimulus may yet prove beneficial in attenuating/reversing osteoporosis, particularly in less severe forms of osteoporosis
- …